

Compaction & Soil Testing Services Pty Ltd 1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Reference: SII 5183-AA

Sydney Sotherby's International Realty Suite 303, Level 3/45-51 Cross St, Double Bay NSW 2028

Preliminary Site Investigation

1 Hunter Street, Muswellbrook NSW 2333 Lot 1 of DP 995228

© May 24 All Rights Reserved Compaction & Soil Testing Services Pty Ltd

> 1/78 Owen Street, Glendenning NSW 2761 Australia ABN: 44 106 976 738 Phone: (02) 9675 7522 Fax: (02) 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Enquiries regarding this project are to be directed to the undersigned						
Doc	cument St	atus				
Author:		Approved by:				
Aud		Br.				
Karl Davis		Paul Scrimshaw				
Karl@csts.net.au		Paul@csts.net.au				
Environmental Consultant		Environmental Consultant				
Compaction & Soil Testing Services		Compaction & Soil Testing Services				
Revision Number	Status	Date				
0	Final	24-May-24				

Enquiries regarding this project are to be directed to the undersigned

Executive Summary

Compaction & Soil Testing Services [CSTS] has been engaged by Sydney Sotherby's International Realty to conduct a Preliminary Site Investigation for the site known as 1 Hunter Street, Muswellbrook NSW 2333 [the site]. This assessment has been conducted in accordance with *NSW EPA Consultants reporting on contaminated land 2020*^[1]. It is currently understood that the site is under assessment for residential subdivision.

The objectives of this investigation were to:

- Determine the potential for site contamination,
- Assess whether the site is suitable, from a contamination perspective, for residential land use,
- Provide conclusions and recommendations regarding the contamination status of the site, and the need for potential further investigation.

In order to achieve the objectives of this report, the following scope of works was undertaken;

- Site inspection to determine the existing site condition and potential areas of environmental concern,
- Excavation of twenty (20) boreholes for the assessment of material condition and the recovery of samples,
- Recovery and laboratory transfer of twenty (20) primary soil samples and two (2) duplicates,
- Comparison of laboratory results with appropriate assessment criteria,
- A review and synthesis of data from the Asbestos Containing Material report (N5294-ACM-R1-191023 undertaken by Hazmat Services Pty Ltd ^[9].
- Review of NSW Historical Imagery via the NSW Historical Imagery Viewer^[10].
- Correlation of data and compilation of this Preliminary Site Investigation Report.

The area of interest for this report does not include the area of the two rectangular, dilapidated sheds on the eastern portion of the site. The designated area of investigation had an area of approximately 3000m². This area is subject to a separate report (REF: SII 5183– AB). Refer to **Appendix A: Drawings.**

The area of investigation for this report consists of the areas subject to the proposed development, that is, the back of the site and towards the centre and east areas of the site, to the east of the milk factory. Information from the client has revealed the area of the milk factory is not going to be affected by the proposed development and the brick cottages on the centre east portion of the site are also not going to be affected by the proposed development, at least initially.

Based on the observed site conditions and the available historical and landscape information, a number of potential contaminants of concern have been identified. These include Heavy Metals, TRH, BTEXN, PAH, PCB, OCP, OPP and Asbestos. Potential exposure pathways for these contaminants have been identified as dermal contact, ingestion, inhalation and plant

uptake. The identified human receptors include current and future site users, construction workers the neighbouring community. Ecological receptors include those located at Sandy creek, the Hunter River and any terrestrial wildlife receptors in the area.

As the site is to be developed into residential land with soil access, CSTS considers the appropriate Health Investigation Level (HIL) to be HIL 'A'; Standard residential with garden/accessible soil (home grown produce). The soil Health Screening Levels (HSLs) for vapour intrusion used are the HSL-As for low density residential sites. Ecological Investigation Levels have been derived from the 'Urban residential and public open space' and Management Limits have been derived from 'Residential, parkland and public open space'. Therefore, the results of the laboratory analysis have been compared to the Residential A Health Investigation Levels/Health Screening Levels, Ecological Investigation Levels and Management Limits detailed within the NEPC National Environmental Protection (Assessment of Site Contamination) Measure^[3].

The laboratory analysis detected Arsenic, Chromium, Copper, Lead, Mercury, Nickel, Zinc, TRH(F3), TRH(F4), Aldrin + dieldrin within the recovered samples. No concentrations were found to exceed the adopted assessment criteria.

No concentrations of BTEX, TRH (F1, F2), PAH compounds, OPP, PCB or Asbestos were detected above the laboratory limits of reporting within any of the recovered samples.

Based on the conducted assessment, CSTS has concluded that the site known as 1 Hunter Street, Muswellbrook NSW 2333, excluding the area subject to SII 5178 – AB, can be made suitable, from a contamination perspective, for residential land use with soil access opportunities, providing the following recommendations are implemented.

- If any demolition of existing structures is to be undertaken it should be conducted in accordance with the recommendations of the asbestos-containing materials survey conducted by Hazmat Services Pty Ltd in 2023.
- The site is generally made clean from anthropogenic deposits such as the rubbish in the back area of the site.

CSTS recommends that, during the process of development, should any indicators of potential contamination be encountered, this office is to be contacted immediately for further assessment. Should there be any change in the proposed development, all conclusions and recommendations are to be reviewed. Specifically, if the proposed development will involve an alternate final land use, the findings of this report will require revision and further assessment may be necessary.

Should you have any queries about the methodology, findings, conclusion or recommendations of this Preliminary Site Investigation, please do not hesitate to contact our office on (02) 9675 7522.

Table of Contents

1. Introduction 1
1.1. Background 1
1.2. Objectives 1
2. Scope of Works 1
3. Site Identification1
4. Site Observations 2
4.1 Back Area 2
4.2 Middle Area 3
4.3 Front Area 3
5. Landscape Characteristics 3
6. Regulatory Searches 4
7. Site History 1
8. Conceptual Site Model 7
9. Data Quality Objectives10
9.1. Step 1: State the problem10
9.2. Step 2: Identify the decision10
9.3. Step 3: Identify inputs for the decision10
9.4. Step 4: Identify the site boundaries10
9.5. Step 5: Develop a decision rule 10
9.6. Step 6: Specify limits on decision errors11
9.7. Optimise the design11
10. Sampling Process11
11. Quality Assurance & Quality Control12
11.1. Field quality measures12
11.2. Laboratory quality assessment12
11.3. Data Evaluation13
12. Assessment Criteria 15
13. Results17
14. Site Characterisation20
15. Conclusions & Recommendations21
16. Limitations21
17. References22

1. Introduction

1.1. Background

Compaction & Soil Testing Services [CSTS] has been engaged by Sydney Sotherby's International Realty to conduct a Preliminary Site Investigation for the site known as 1 Hunter Street, Muswellbrook NSW 2333 [the site]. This assessment has been conducted in accordance with *NSW EPA Consultants reporting on contaminated land 2020*^[1]. It is currently understood that the site is under assessment for residential subdivision.

1.2. Objectives

The objectives of this investigation were to;

- Determine the potential for site contamination
- Assess whether the site is suitable, from a contamination perspective, for the proposed development
- Provide conclusions and recommendations regarding the contamination status of the site, and the need for potential further investigation.

2. Scope of Works

In order to achieve the objectives of this report, the following scope of works was undertaken;

- Site inspection to determine the existing site condition and potential areas of environmental concern,
- Excavation of twenty (20) boreholes for the assessment of material condition and the recovery of samples,
- Recovery and laboratory transfer of twenty (20) primary soil samples and two (2) duplicates,
- Comparison of laboratory results with appropriate assessment criteria,
- A review and synthesis of data from the Asbestos Containing Material report (N5294-ACM-R1-191023 undertaken by Hazmat Services Pty Ltd ^[9].
- Review of NSW Historical Imagery via the NSW Historical Imagery Viewer^[10].
- Correlation of data and compilation of this Preliminary Site Investigation Report.

3. Site Identification

The site known as 1 Hunter Street, Muswellbrook NSW 2333 [the site] covers an area of approximately 9.61ha. The site is legally identified as Lot 1 of DP 995228. The site is bound to the north and east by residential properties and to the northwest by a row of trees then a railway line which runs parallel to the New England Highway just beyond that. The site is bordered to the south by Hunter Street, empty grassed lot and residential properties.

The Hunter River sits approximately 400m west of the site. Sandy creek which runs south into the Hunter River, sits approximately 120m west of the site.

The area of the large abandoned milk factory is zoned as E4: General Industrial whereas the rest of the site is zoned as R1: General Residential ^[11]. It is understood the area of the milk factory will remain zoned as E4: General Industrial while the middle and back areas of the site will become zoned for residential.

The area of investigation for this report consists of the areas subject to the proposed development, that is, the back of the site and towards the centre and east areas of the site, to the east of the milk factory. Information from the client has revealed the area of the milk factory is not going to be affected by the proposed development. Information from the client has revealed the buildings on-site will be remaining on-site, at least initially, aside from the sheds which will be demolished.

The area of interest for this report does not include the area of the two rectangular, dilapidated sheds on the eastern portion of the site. The designated area of investigation had an area of approximately 3000m². This area is subject to a separate report (REF: SII 5183– AB). Refer to **Appendix A: Drawings.**

4. Site Observations

At the time of the CSTS site inspection on 23 April 2023, the site consisted of three (3) areas distinct focus areas; the back of the site, the middle and the front of the site. The focus areas were chosen based on the location of the proposed development.

4.1 Back Area

The back of the site generally consisted of an overgrown grassed area with weeds, shrubs and trees in the northeast portion of the site. The area was approximately $20,000m^2$ and sloped down to the northwest. The area was bordered by residential properties to the east and southeast. The area was bordered to the west by a row of tress then a railway line running parallel to the New England Highway just beyond it. To the southwest of the area was a car workshop shed with an approximate area of $1200m^2$.

At the time of investigation, there was rubbish that had been dumped in this area. The rubbish in the back area consisted of bricks, timber, wood, hardboard, metal sheeting, ceramic tiles and plastic items (wheelie bin, a pram, and chairs). During the inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, was observed.

Five (5) boreholes were drilled using a mounted drill rig. Five (5) samples were taken in the back area at a depth of between 100mm - 150mm. The material in the area consisted of gravelly orange brown sandy clay fill material with high organics and occasional ironstone.

Non-friable ACM was previously identified by Hazmat Services in the car workshop shed which borders the back area to the southwest. ACM was identified in the walls of the building and a damaged gable infill. The damaged gable infill was removed by a Class A licensed removalist in 2023. An Asbestos Clearance Report was then provided by Hazmat Services for the material ^[9]. A thorough search for asbestos containing materials (ACM) was conducted in the area; however, none was found at the time of investigation.

4.2 Middle Area

The middle focus area of the site was generally consisted of a grass field area containing an amenities block, toilet block, four (4) cottages and a plant room. All of these buildings were constructed with brick. Non-friable ACM had been identified in all of these buildings in the Hazmat Services 2023 ACM survey; however, these buildings were generally in good condition and no ACM was found at the time of investigation.

The area is bound by a road to the northeast by the shed area subject to report SII 5183 - AB, residential properties to the east, Hunter Street and residential properties to the south and Hunter Street to the west with the heritage listed milk factory just beyond the street.

Fifteen (15) boreholes were drilled using a mounted drill rig. Fifteen (15) samples were taken in the middle area at a depth of between 100mm - 150mm. The material in the area consisted of brown clay loam or sandy clay loam with high organics.

During the visual inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, was observed. No ACM was found at the time of investigation. The only foreign materials observed were occasional pieces household plastic rubbish.

4.3 Front Area

The front area is located on the south most section of the site. The front area consisted of an approximately $8200m^2$ overgrown grass field with a building of unknown purpose measuring approximately $150m^2$ on the southern section. The area is bordered by the entrance to the factory to the north/northeast, Hunter Street to the east, a row of tress then a railway line to the west and an empty grassed lot to the south.

Five (5) boreholes were drilled using a mounted drill rig. Five (5) samples were taken in the back area at a depth of between 100mm - 150mm. The material sampled in the area consisted of orange brown sandy clay fill or sandy clay loam material with high organics with ironstone inclusions.

During the visual inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, was observed. No ACM or foreign materials were found at the time of investigation.

Refer to Appendix A – Site Drawings and Appendix B – Site Photographs.

5. Landscape Characteristics

According the New South Wales Department of Planning and Environment's web tool – eSpade, the site is on the Roxburgh soil landscape ^[7].

This soil landscape covers undulating low hills and undulating hills. yellow podzolic soils (Dy3.11, Dy2.41) occur on upper to midslopes with Red Solodic Soils (Dr2.43) on more rounded hills. Lithosols (Um5.21) occur on crests. Brown Podzolic soils (Db2.21) occur on

slopes on conglomerate with associated flat pavements. Yellow Soloths (Dy3.41) have been recorded in some gullies.

The qualities and limitations of this landscape include localised complex soils, localised mass movement hazard, localised foundation hazard, localised complex terrain, localised recharge zone, localised discharge zone, localised salinity hazard, widespread gully erosion hazard, widespread sheet erosion hazard, localised streambank erosion hazard, localised high run-on, localised poor drainage, localised seasonal waterlogging.

The landscape consists of undulating low hills and undulating hills with elevations of 80 - 370 m. Slopes are 0 - 10%, with slope lengths of 800 - 1,200 m. Local relief is 60 - 120 m. Drainage lines occur at intervals of 300 - 1,500 m.

CSTS notes that nine (9) groundwater bores are located within 1km of the site. These were drilled to depths ranging from 8.5m to 19m bgl^[12]. Based on the elevation contours, measured depth of groundwater and proximity to the Hunter River, CSTS anticipates the groundwater flows westerly towards the Hunter River.

6. Regulatory Searches

Within 1km of the site, no sites were found to be included within the list of NSW contaminated sites notified to the EPA.

Within 1km of the site, no sites currently hold Environment Protection Licences.

Within 1km of the site, the POEO Public Register contains a surrendered license from The Upper Hunter County Council for the miscellaneous licensed discharge to waters (at any time).

7. Site History

A summary of the sites known historical uses from aerial imagery and historical documentation is provided below in **Table 1**.

Table	Summary of Historical use of the site and its surroundings
Date	
1958	

T

	AA
Site	Surroundings
ruction of the factory had begun in 1945 and appears to be complete in 1958. Two uildings can be seen in the east portion of the site and three (3) can be seen in the southeast portion. It is not clear what the purpose of these buildings is.	The surrounding land is not built up to a significant degree. The railway line can be seen bordering the site to the west. The area to the north east of the site appears ploughed, possibly indicating agriculture.

8. Conceptual Site Model

The conceptual site model containing potential contaminants of concern, likely sources, potential pathways and receptors is presented in **Table 2**.

Table 2: Conceptual Site Model

Contaminant of Concern	Sources	Potential Pathways	Receptors
Asbestos	 Poor demolition practices Potential historic filling from unknown origins Materials within existing structures. 	• Airborne migration of fibres	 Current site users Future site users Construction workers Neighbouring community The Hunter River Sandy Creek Terrestrial wildlife receptors
Heavy Metals	 Historic building construction, particularly Lead based paints, leaching from Zinc-plated roofing and Arsenic from treated timbers Potential historic filling from unknown origins Vehicle exhaust depositions Chemicals associated with the milk factory Atmospheric deposits from mining operations in the area 	 Dermal Contact Ingestion Plant uptake Groundwater infiltration 	 Current site users Future site users Construction workers The Hunter River Sandy Creek Terrestrial wildlife receptors
BTEX	 Spills & leaks from stored fuels & vehicles Vehicle deposition 	 Dermal Contact Ingestion Plant uptake Groundwater infiltration 	 Current site users Future site users Construction workers The Hunter River Sandy Creek Terrestrial wildlife receptors

TRH	 Spills & leaks from stored fuels & vehicles Vehicle deposition Vehicle & plant maintenance Spills and leaks of chemicals associated with the milk factory 	 Dermal Contact Inhalation Ingestion Plant uptake Groundwater infiltration 	 Current site users Future site users Construction workers The Hunter River Sandy Creek Terrestrial wildlife receptors
РАН	 Potential buried ash Vehicle deposition Chemicals associated with the milk factory 	 Dermal Contact Inhalation Ingestion Groundwater infiltration 	 Current site users Future site users Construction workers The Hunter River Sandy Creek Terrestrial wildlife
Pesticides	Possible use within garden areasHistoric application	 Dermal Contact Ingestion Plant uptake Groundwater infiltration 	 Current site users Future site users Construction workers The Hunter River Sandy Creek Terrestrial wildlife
РСВ	Hydraulic fluidsElectrical equipment	Dermal ContactIngestion	 Current site users Future site users Construction workers

9. Data Quality Objectives

The Data Quality Objective [DQO] process was applied to the investigation to ensure that all data collection activities were appropriate and achieved the project objectives. The DQO process consists of seven (7) steps, outlined below, which define the type, quality, and quantity of data needed to support decisions relating to the environmental condition of a site.

9.1. Step 1: State the problem

The site has a number of potential sources of contamination, as outlined within Section 6. The 'problem' as it stands, is that the site may contain contamination which has the potential to affect the suitability of the property. The purpose of this investigation is to determine the condition of the soil within the site and to provide recommendations where necessary. CSTS notes that groundwater may be encountered during development, though assessment of groundwater condition was not included within this preliminary site investigation.

9.2. Step 2: Identify the decision

Data is required in order to determine the condition of the soil within the site. It will be necessary to decide: 'Is the site suitable for residential land use?' To allow for the decision to be made, it will be necessary to consider the following questions;

- What are the potential sources of contamination at the site?
- Does the material within the site contain contaminants?
- Where contaminants are present, do the concentrations have the potential to adversely impact on human health or the environment?
- What, if any, further remediation action is required?

9.3. Step 3: Identify inputs for the decision

Key data required for the decision making process includes:

- Visual assessment of the site and material condition,
- Identification of the concentration of potential soil contaminants,
- Comparison of the results of the laboratory analysis to the applicable guidelines to evaluate the suitability of the site for the proposed development.

9.4. Step 4: Identify the site boundaries

The boundaries of the study area are the site boundaries show within Appendix A. The study is temporally limited to the day of sampling, that is, 24 April 2024.

9.5. Step 5: Develop a decision rule

The assessment includes a comparison of individual soil sample results to the Residential A Health Investigation Levels, calculated Ecological Investigation Levelss and Management Limits detailed within Schedule B1 of *NEPC National Environmental Protection (Assessment of Site Contamination) Measure* ^[3]. The assessment criteria are outlined and justified in Section 12.

9.6. Step 6: Specify limits on decision errors

Two types of decision errors may occur due to uncertainties or limitations in the project data set:

- A site is deemed uncontaminated when, in fact, it is contaminated,
- A site is deemed contaminated when, in fact, it is uncontaminated.

The consequences for incorrectly assessing a site as posing an unacceptable risk are considered less significant than the consequences for incorrectly assessing a site as posing acceptable risk.

Factors that may contribute to one of the above decision errors include:

- Sampling error the sampling program does not adequately detect the variability of a contaminant from point to point across the site. That is, the samples collected are not representative of the site conditions,
- Measurement error may occur through the sample collection, handling, preparation, analysis, and data reduction processes.

The combination of the above errors is known as 'total study error' and is minimised through the correct choice of sampling design and measurement systems.

CSTS has adopted an acceptable error rate of 5% for false negative results. CSTS has defined a false negative result as classifying the site uncontaminated when, in fact, it is contaminated. This acceptable rate of error is derived to provide a 95% level of confidence, accounting for potential errors and limitations that may arise.

CSTS has adopted an acceptable error rate of 5% for false positive results. CSTS has defined a false positive result as classifying the site contaminated when, in fact, it is uncontaminated. This acceptable rate of error is derived to provide a 95% level of confidence, accounting for potential errors and limitations that may arise.

9.7. Optimise the design

In order to optimise the design, a soil sampling plan was implemented as outlined within Section 10. Quality assurance and quality control procedures were implemented as outlined within Section 11.

10. Sampling Process

As this investigation is preliminary, sampling locations were assessed at reduced rate of the recommended minimum rate within the *NSW EPA Sampling Design Part 1 – Application*^[4]. Soil samples were recovered from the near-surface profiles. Twenty (20) boreholes were excavated in accessible areas to provide spatial coverage of the site, with a sample recovered from each borehole.

The boreholes were excavated using a mounted drill auger to depths of between 0.15m and 0.4m bgl. Samples were recovered from material held within the auger at surface 0-150mm profiles, taking care to ensure sampled material was not in direct contact with the auger head. Each sample was recovered using a pair of nitrile gloves to transfer a portion of the material

into a laboratory supplied 250mL glass jar with Teflon seal lid. A replicate sample was recovered in the same manner into a food-grade 'snap-lock' bag for the analysis of Asbestos. Each sample was sealed and labelled with the project code and sample ID before being transferred into a chilled container to begin the cool down process as required prior to the chemical analysis of the soil.

When the samples had been recovered, the boreholes were refilled with the excavated material in accordance with Work Health and Safety requirements. The chilled container was sealed and transported to Eurofins Pty Ltd under stringent chain or custody procedures. Upon receipt of the samples, the laboratory checked the samples to confirm their condition, including the integrity of the sample jar seals. When satisfied, the laboratory returned a sample receipt. Laboratory documentation is located within Appendix D.

11. Quality Assurance & Quality Control

11.1. Field quality measures

Site works were conducted by an experienced Environmental Consultant on 24 April 2024 in accordance with the *CSTS Field Operating Manual*^[5] on Standard Operating Procedures for Environmental Sampling and Monitoring. This includes but is not limited to; the methods of sampling, decontamination of sampling equipment, sample preparation and storage, the documentation of site conditions, and the completion of chain of custody documentation.

Duplicate samples were recovered to analyse the precision and reproducibility of the conducted analysis. The duplicate samples were labelled with an identification number not known to the laboratory, and analysed in the same way as the primary samples. Duplicate samples are analysed by calculating the relative percentage difference [RPD] of the laboratory results for the duplicate and corresponding primary sample. The RPD is a method of normalising two values and allows a comparison between values.

Upon determination of the RPDs, no RPDs were found to exceed 50% in either of the two samples indicating a high level of laboratory and sampling accuracy. Refer to **Table 4 and 5**.

11.2. Laboratory quality assessment

Eurofins Pty Ltd is accredited by NATA (NATA accreditation number 1261) for chemical testing services. Eurofins Pty Ltd has a quality system compliant to ISO/IEC 17025 and work to documented procedures in accordance with this standard. This includes but is not limited to; participation in proficiency testing, use of certified reference materials and statistical analysis of quality control data.

Quality control samples are included in the laboratory's testing schedules at or above frequencies stipulated within the *NEPC National Environmental Protection (Assessment of Site Contamination) Measure* ^[3], and in accordance with their NATA accreditation. These include the use of calibration standards, calibration verification standards, method blanks, matrix spikes and duplicates, laboratory control samples, surrogates and internal standards.

Analyte	LOR (mg/kg)	Concent	RPD (%)	
		BH8	BH8A	
Arsenic	2	4.2	4.7	11.2
Cadmium	0.4	< 0.4	< 0.4	0
Chromium	5	40	32	22.2
Copper	5	18	18	0
Lead	5	8.5	8.9	4.6
Mercury	0.1	< 0.1	< 0.1	0
Nickel	5	40	33	19.2
Zinc	5	36	43	17.2
Total PAH	0.5	< 0.5	< 0.5	0
B(a)P TEQ	0.5	< 0.5	< 0.5	0
Benzene	0.1	< 0.1	< 0.1	0
Toluene	0.1	< 0.1	< 0.1	0
Ethyl-benzene	0.1	< 0.1	< 0.1	0
Xylene	0.3	< 0.3	< 0.3	0
TRH F1	25	<25	<25	0
TRH F2	50	<50	<50	0
TRH F3	50	<50	<50	0
TRH F4	100	<100	<100	0

Table 3: Relative Percent Differences

Table 5: Relative Percent Differences

Tuble 5. Remuive Tercent Differences									
Analyte	LOR (mg/kg)	Concen	RPD (%)						
		BH17	BH17A						
Arsenic	2	2.3	3.4	38.6					
Cadmium	0.4	< 0.4	< 0.4	0					
Chromium	5	49	67	31.0					
Copper	5	14	18	25					
Lead	5	< 5	6.2	21.4					
Mercury	0.1	< 0.1	< 0.1	0					
Nickel	5	41	55	19.2					
Zinc	5	12	16	29.2					
Total PAH	0.5	< 0.5	< 0.5	0					
B(a)P TEQ	0.5	< 0.5	< 0.5	0					
Benzene	0.1	< 0.1	< 0.1	0					
Toluene	0.1	< 0.1	< 0.1	0					
Ethyl-benzene	0.1	< 0.1	< 0.1	0					
Xylene	0.3	< 0.3	< 0.3	0					
TRH F1	25	<25	<25	0					
TRH F2	50	<50	<50	0					
TRH F3	50	<50	<50	0					
TRH F4	100	<100	<100	0					

11.3. Data Evaluation

Data Quality Indicators [DQI] are used to document and quantify compliance, or otherwise with the requirements of the Data Quality Objectives [DQO]. They are used to assess the reliability of the field procedures and analytical results. Refer to **Table 6**.

Table 6: Data Quality Indicators

DQI	<u>o: Data Qualit</u>	Consideration	Compliance				
DQI			A total of twenty - two (22) samples were				
		All critical locations sampled	collected from twenty (20) boreholes excavated within the site. As this was a preliminary assessment, this is considered adequate.				
		All samples collected (from grid and at depth)	All samples were collected in accordance with the sampling plan				
	Field	SOPs appropriate and complied with	All samples were collected in accordance with relevant guidelines, industry practices, and Australian Standards				
		Experienced sampler	Samples were recovered by a suitably qualified and experienced sampler				
\mathbf{s}^{1}		Documentation correct	All required documentation was completed including written site records and photographic logs				
Completeness ¹		All critical samples analysed according to SAQP	All of the recovered samples were analysed by a NATA accredited laboratory				
Con	Laboratory	All analytes analysed according to SAQP	Each recovered sample was analysed for the analytes required by the SAQPs in accordance with the context for which the sample was recovered				
		Appropriate methods and LORs	Eurofins Pty Ltd is a suitably qualified NATA accredited laboratory, therefore the appropriate methods and LORs were adopted for the testing, as outlined within the analytical reports				
		Sample documentation complete	Appropriate chain of custody documentation was completed. A sample receipt was provided detailing the condition of the samples upon receipt				
		Sample holding times complied with	All samples were analysed within the appropriate holding times as detailed in <i>NEPM</i> 2013				
		Same SOPs used on each occasion	Each sample was recovered in accordance with the SOPs				
		Experienced sampler	Samples were recovered by a suitably qualified and experienced sampler				
ty ²	Field	Climatic conditions	The samples were collected over a period of less than two (2) hours, therefore the climatic conditions are deemed to have a negligible impact on the comparability of the samples.				
Comparability ²		Same types of samples collected	The type of samples collected was consistent				
Com		Sample analytical methods used	Eurofins Pty Ltd is a suitably qualified NATA accredited laboratory, therefore the appropriate methods were adopted for the testing, as outlined within the analytical reports				
	Laboratory	Sample LORs	Eurofins Pty Ltd is a suitably qualified NATA accredited laboratory, therefore the appropriate LORs were adopted for the testing, as outlined within the analytical reports				
		Same laboratories	Eurofins Pty Ltd conducted all of the analytical				

DQI		Consideration	Compliance			
			testing			
		Same units	The same units were used for the respective analytes			
Representativeness ³	Field	Appropriate media sampled according to SAQP	The SAQP was limited to soil condition investigation. All samples were recovered in accordance with the SAQP			
sentati		All media identified in SAQP	The sampling investigation was limited to the analysis of the soil			
Laboratory All samples analy according to SA		All samples analysed according to SAQP	Eurofins Pty Ltd is a suitably qualified NATA accredited laboratory, therefore all samples were analysed in accordance with the appropriate requirements			
	Field SOPs appropriate and complied with		All samples were recovered in accordance with the SOPs			
Precision ⁴	Laboratory	Laboratory and inter- laboratory duplicates	Laboratory and inter-laboratory duplicates are analysed as a component of the standard operating procedures of Eurofins Pty Ltd in accordance with the conditions of their NATA accreditation			
		Laboratory	Field duplicates	Field duplicate samples were recovered at a rate of 10% and labelled with sample IDs not known to the laboratories, and were analysed along with the primary samples by Eurofins Pty Ltd as detailed within Section 11		
		Laboratory-prepared volatile trip spikes	A laboratory-prepared volatile trip spike was beyond the scope of investigation			
	Field	SOPs appropriate and complied with	All samples were recovered in accordance with the SOPs			
Accuracy ⁵	Laboratory	Analysis of field blanks, rinsate blanks, reagent blanks, method blanks, matrix spikes, matrix spike duplicates, surrogate spikes, reference materials, laboratory control samples, and laboratory-prepared spikes	Laboratory quality assurance and quality control samples were analysed by Eurofins Pty Ltd, as summarised in Section 11 and detailed within the analytical reports. Field blanks and spikes were beyond the scope of investigation.			

12. Assessment Criteria

As the site is to be developed into residential land with soil access, CSTS considers the appropriate Health Investigation Level (HIL) to be HIL 'A'; Standard residential with garden/accessible soil (home grown produce). The soil Health Screening Levels (HSLs) for vapour intrusion used are the HSL-As for low density residential sites. Ecological Investigation Levels have been derived from the 'Urban residential and public open space' for aged contamination and Management Limits have been derived from 'Residential, parkland and public open space'. The results of the laboratory analysis have been compared to the Residential A Health Investigation Levels/Health Screening Levels, Ecological Investigation Levels and Management Limits detailed within the *NEPC National Environmental Protection (Assessment of Site Contamination) Measure* ^[3]. Provided the detected concentrations do not

exceed these levels, the site can be considered suitable for residential land use with soil access from a health and ecological risk perspective.

Analyte	Residential A Health Investigation/Screening Levels	ESLs/EILS	Management Limits		
Arsenic	100	100	-		
Cadmium	20	-	-		
Chromium	100	390	-		
Copper	7000	250	-		
Lead	300	1100	-		
Mercury	200	-	-		
Nickel	1,200	480	-		
Zinc	8000	1400	-		
PAH	300	-	-		
B(a)P	-	1.4	-		
$B(a)PTEQ^{1}$	3	-	-		
Benzene	0.7	50	-		
Toluene	460	85	-		
Ethyl-benzene	NL	125	-		
Xylene	110	45	-		
Naphthalene	5	170	-		
TRH F1	60^{2}	180^{4}	800		
TRH F2	330^{2}	120^{5}	1000		
TRH F3	NL^2	1300	2500		
TRH F4	NL^2	5600	1000		
DDT + DDE + DDD	600	180^{6}	-		
Aldrin + Dieldrin	6	-	-		
Chlordane	50	-	-		
Endosulfan	270	-	-		
Endrin	10	-	-		
Heptachlor	6	-	-		
HCB	10	-	-		
Methoxychlor	300	-	-		
Chlorpyrifos	160	-	-		
PCB	1	-	-		
Asbestos	No Detection	-	-		

 Table 7: Assessment Criteria (mg/kg)

Adapted from Schedule B(1) of NEPC National Environmental Protection (Assessment of Site Contamination) Measure ^[3]. NL = Not Limiting.

Notes:

1. Calculated by multiplying the concentration of each carcinogenic PAH in the sample by its potency relative to B(a)P and summing these products.

- 2. Investigation level for vapour intrusion, clay 0m to <1m
- 3. No quantitative analysis was conducted for Asbestos, therefore a criterion of 'No Detection' has been Adopted.
- 4. Value includes BTEX
- 5. Value includes Naphthalene

6. Value for DDT only

13. Results

The laboratory analysis of the recovered samples was undertaken by experienced technicians from Eurofins Pty Ltd in accordance with relevant Australian Standards and the conditions of their NATA accreditation.

The laboratory analysis detected Arsenic, Chromium, Copper, Lead, Mercury, Nickel, Zinc, TRH(F3), TRH(F4), Aldrin + dieldrin within the recovered samples. No concentrations were found to exceed the adopted assessment criteria.

No concentrations of BTEX, TRH (F1, F2), PAH compounds, OPP, PCB or Asbestos were detected above the laboratory limits of reporting within any of the recovered samples. Refer to **Tables 8 & 9**.

Table 8: Laboratory Results (mg/kg)

Priority Metals							Polycyclic Aromatic Hydrocarbons			BTEX					
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	РАН	B(a)P	B(a)P TEQ	Benzene	Toluene	Ethyl-benzene	Xylene
BH1	6.6	< 0.4	23	14	8.7	< 0.1	17	25	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH2	4.2	< 0.4	70	26	7.8	< 0.1	72	49	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH3	6.8	< 0.4	43	18	9.8	< 0.1	39	46	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH4	6.7	< 0.4	42	24	12	< 0.1	33	71	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH5	3.8	< 0.4	41	21	16	< 0.1	32	66	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH6	< 2	< 0.4	36	13	5.7	< 0.1	21	19	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH7	4.3	< 0.4	33	18	27	< 0.1	30	77	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH8	4.7	< 0.4	32	18	8.9	< 0.1	33	43	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH9	4.6	< 0.4	39	17	8.2	< 0.1	38	40	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH10	2.3	< 0.4	58	20	5.4	< 0.1	70	22	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH11	2.9	< 0.4	62	18	5.7	< 0.1	51	21	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH12	2.3	< 0.4	58	19	< 5	< 0.1	49	22	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH13	< 2	< 0.4	66	19	13	< 0.1	37	53	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH14	10	< 0.4	12	11	19	< 0.1	7.1	17	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH15	3.5	< 0.4	75	24	5.6	< 0.1	90	24	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH16	4	< 0.4	58	18	14	< 0.1	37	57	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH17	3.4	< 0.4	67	18	6.2	< 0.1	55	16	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH18	5.2	< 0.4	66	23	18	< 0.1	44	99	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH19	4.3	< 0.4	64	20	9	< 0.1	53	29	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
BH20	3.3	< 0.4	44	19	6.9	< 0.1	39	33	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3
HIL-A/HSL-A	100	20	100	7000	300	200	1,200	8000	300	-	3	0.7	460	NL	110
EIL/ESL	100	-	390	250	1100	-	480	1400	-	1.4	-	50	85	125	45

Adapted from Eurofins Analytical Report 1091202 and the NEPC National Environmental Protection (Assessment of Site Contamination) Measure^[3]. Exceedance of adopted criteria shaded.

Table 9: Laboratory Results (mg/kg)

	Total Recoverable Hydrocarbons				Organochlorine Pesticides								Organophosphorus Pesticides	РСВ	Asbestos
Sample ID	TRH F1	TRH F2	TRH F3	TRH F4	DDT + DDE + DDD	Aldrin + Dieldrin	Chlordane	Endosulfan	Endrin	Heptachlor	HCB	Methoxychlor	Chlorpyrifos	PCB	Asbestos
BH1	< 20	< 50	110	160	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH2	< 20	< 50	170	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH3	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH4	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH5	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH6	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH7	< 20	< 50	< 100	< 100	< 0.5	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH8	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH9	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH10	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH11	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH12	< 20	< 50	< 100	< 100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	ND
BH13	< 20	< 50	470	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH14	< 20	< 50	< 100	< 100	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<1	ND
BH15	< 20	< 50	< 100	< 100	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<1	ND
BH16	< 20	< 50	< 100	< 100	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<1	ND
BH17	< 20	< 50	< 100	< 100	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<1	ND
BH18	< 20	< 50	120	< 100	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<1	ND
BH19	< 20	< 50	< 100	< 100	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<1	ND
BH20 HIL-A/HSL-A	< 20 60	< 50 330	< 100 NL	< 100 NL	<0.5	<0.5 6	<0.5 50	<0.5 270	<0.5 10	<0.5 6	<0.5 10	<0.5 300	<0.5 160	<1 1	ND No Detection
EIL/ESL	-	-	-	-	180	-	-	-	-	-	-	-	-	-	-
Management Limits	800	1000	2500	1000	-	-	-	-	-	-	-	-	-	-	-

Adapted from Eurofins Analytical Report 1091202 and the NEPC National Environmental Protection (Assessment of Site Contamination) Measure ^[3]. ND = No Detection Detection

14. Site Characterisation

The back area of the site has historically been a cleared area of grassland that may have been used for some agricultural purpose prior to the 60s. Illegal dumping appears to have occurred in the area, beginning sometime in the 2010s. At the time of investigation, the back of the site generally consisted of an overgrown grassed area with weeds, shrubs and trees. The area was approximately 20,000m² and sloped down to the northwest. The area was bordered by residential properties to the east and southeast. The area was bordered to the west by a row of tress then a railway line running parallel to the New England Highway just beyond it. To the southwest of the area was a car workshop shed with an approximate area of 1200m².

At the time of investigation, there was rubbish that had been dumped in this area. The rubbish in the back area consisted of bricks, timber, wood, hardboard, metal sheeting, ceramic tiles and plastic items (wheelie bin, a pram, and chairs). During the inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, was observed. The soil in the area consisted of fill material from an unknown origin.

The middle focus area of the site was generally consisted of a grass field area containing an amenities block, toilet block, four (4) cottages and a plant room. All of these buildings were constructed with brick. Non-friable ACM had been identified in all of these buildings in the Hazmat Services 2023 ACM survey; however, these buildings were generally in good condition and no ACM was found at the time of investigation. Historically, the area had been used as area for low density residential housing since at least the 1950s.

The area is bound by a road to the north by the shed area subject to report SII 5183 - AB, residential properties to the east, Hunter Street to the south and Hunter Street to the west with the heritage listed milk factory just beyond the road.

During the visual inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, were observed in this area. No ACM was found at the time of investigation. The only foreign materials observed were occasional pieces household plastic rubbish.

The front area was focus area of the site was consisted of an approximately $8200m^2$ overgrown grass field with an old building on the southern section. The area is bordered by the entrance to the factory to the north/northeast, Hunter Street to the east, a row of tress then a railway line to the west and an empty grassed lot to the south.

During the visual inspection, no indicators of significant contamination, such as the staining or discolouration of sub-surface material, or the emission of odours, were observed in this area. No ACM or foreign materials were found at the time of investigation.

The western side of the site has been occupied by a heritage listed milk factory which appears to have been present since 1953 according to the NSW Heritage Inventory ^[13]. The factory has been listed as a heritage item in the Muswellbrook Local Environmental Plan 2009. Information from the client has revealed the old factory will not be affected by the proposed development.

Twenty (22) samples were taken in total with two (2) duplicates. The samples were compared against HIL-A, EILs and Management Limits as detailed in section 12. The laboratory

analysis detected Arsenic, Chromium, Copper, Lead, Mercury, Nickel, Zinc, TRH(F3), TRH(F4), Aldrin + dieldrin within the recovered samples. No concentrations were found to exceed the adopted assessment criteria.

No concentrations of BTEX, TRH (F1, F2), PAH compounds, OPP, PCB or Asbestos were detected above the laboratory limits of reporting within any of the recovered samples.

15. Conclusions & Recommendations

Based on the conducted assessment, CSTS has concluded that the site known as 1 Hunter Street, Muswellbrook NSW 2333, excluding the area subject to SII 5178 – AB, can be made suitable, from a contamination perspective, for residential land use with soil access opportunities, providing the following recommendations are implemented.

- If any demolition of existing structures is to be undertaken it should be conducted in accordance with the recommendations of the asbestos-containing materials survey conducted by Hazmat Services Pty Ltd in 2023.
- The site is generally made clean from anthropogenic deposits such as the rubbish in the back area of the site.

CSTS recommends that, during the process of development, should any indicators of potential contamination be encountered, this office is to be contacted immediately for further assessment. Should there be any change in the proposed development, all conclusions and recommendations are to be reviewed. Specifically, if the proposed development will involve an alternate final land use, the findings of this report will require revision and further assessment may be necessary.

16. Limitations

This report pertains to the site known as 1 Hunter Street, Muswellbrook NSW 2333 at the time of the visual assessment and sample recovery. Should there be any variations in the site conditions since the abovementioned date (such as the importation of fill, chemical spillage, illegal dumping etc.), further assessment will be required. Should any suspect material be encountered, we recommend that this office be contacted immediately for further assessment. Neither Compaction & Soil Testing Services Pty Ltd, nor any other reputable firm can give unqualified warranties on the condition of the site and subsurface conditions.

While Compaction & Soil Testing Services Pty Ltd takes all reasonable due care and diligence, we offer no absolute warranty for the material below or between the locations sampled and investigated. Unless otherwise stated, Compaction & Soil Testing Services Pty Ltd has made no effort to verify the validity of the information gathered from external sources, and assumes it provides a reliable foundation for the assessment. Compaction & Soil Testing Services Pty Ltd does not assume any liability for site conditions unobserved or inaccessible at the time of the investigation.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described within this report, then all recommendations are to be reviewed. No other warranty, expressed or implied, is made or intended. Copyright of this report remains the property of Compaction & Soil Testing Services Pty Ltd.

Subject to the payment of all fees due for the investigation, the client alone shall have licence to use this report. This report shall not be reproduced except in full.

Should you have any queries about the methodology, findings, conclusions or recommendations of this Stage 1 Preliminary Site Investigation, please do not hesitate to contact our office on (02) 9675 7522.

17. References

[1] – New South Wales Environmental Protection Authority 2020, Contaminated Lands Guidelines; Consultants reporting on contaminated land, NSW EPA, Parramatta NSW Australia

[2] – New South Wales State Government 1997, *Contaminated Land Management Act 1997*, NSW State Government, Sydney NSW Australia.

[3] – National Environmental Protection Council 2013, National Environment Protection (Assessment of Site Contamination) Measure 1999, Australian Federal Government, Canberra ACT Australia

[4] – New South Wales Environmental Protection Agency 2022, *Sampling Design Part 1 – Application*, NSW EPA, Parramatta NSW Australia

[5] – Compaction & Soil Testing Services Pty Ltd, 2014, Field Manual on Standard Operating Procedures for Environmental Sampling and Monitoring

[6] – Nearmap Aerial Imagery, part of Nearmap Australia Pty Ltd, Barangaroo NSW Australia

[7] – New South Wales Department of Planning and Environment, *eSPADE Tool*, accessed 24/05/2024 via https://www.environment.nsw.gov.au/eSpade2WebApp

[8] – New South Wales Department of Planning and Environment, *Naturally Occurring Asbestos* in NSW, accessed 24/05/2024 via https://trade.maps.arcgis.com/apps/PublicInformation/index.html?appid=87434b6ec7dd4aba8 cb664d8e646fb06

[9] - Asbestos Containing Material report (N5294-ACM-R1-191023), Hazmat Services Pty Ltd, Carrington NSW 2294

[10] – New South Wales Spatial Services Department of Customer Service, *Historical, aerial and satellite imagery NSW* accessed 24/05/2024 via https://www.spatial.nsw.gov.au/products_and_services/aerial_and_historical_imagery (Accessed: 07 May 2024).

[11] - New South Wales State Government, NSW Planning Portal Spatial Viewer accessed24/05/2024viaproperty/address.https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-

[12] – Australian Government, Bureau of Meteorology, *Australian Groundwater Explorer* accessed 24/05/2024 via <u>http://www.bom.gov.au/water/groundwater/explorer/map.shtml</u>

[13] - New South Wales State Government, NSW Environment and Heritage, NSW State
HeritageHeritageInventoryaccessed24/05/2024https://www.hms.heritage.nsw.gov.au/App/Item/SearchHeritageItems?_ga=2.165972984.714120821.1658117920-344545924.1656901875.

C.S.T.S. Phone: 02 9675 7522 Email: office@csts.net.au

Appendix A -Drawings

	BH1 BH2 BH3 BH2 BH3 BH3 BH2 BH3 BH3 BH3 BH3 BH3 BH3 BH3 BH3	Automatical Margin A						
Compaction & Soil Testing Services Pty Ltd								
Drawn: KD	Sampling Plan	Drawing No: AA 001						
Approved: KD	Site drawing for the material of interest located at 1 Hunter Street, NSW 2333	Project Code						
	Approximate GPS Coordinates of (GDA94): -32.250830, 150.894650.	KTT 5184 - AA						
Date: 24/05/2024	Source: Nearmap, , dated 6 March 2024	N11 J184 - AA						

C.S.T.S. Phone: 02 9675 7522 Email: office@csts.net.au

Appendix B: Photographs

Compaction & Soil Testing Services Pty Ltd

Compaction & Juli LCSLing Juli volume 4, 106 976 738 1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Photograph 1 – Overview of the back area looking to the north east. Located at 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.249133, 150.896514.

Photograph 2 – Pile of bricks at the back area of site. Located at 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.249133, 150.896514.

CSTCS. COMPACIIVIL & JULI LESLING SULFICED 4, 2017 1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Photograph 3 – Wood and scrap metal at the back area of site. Located at 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.249133, 150.896514.

Photograph 4 – Overview of the back area looking to the south west. Located at 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.249133, 150.896514.

CSTCS COMPACINING NSW 2761 • ABN 44 106 976 738 1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Photograph 5 – Overview of bore hole 2 (BH2) with the material of interest pictured. Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.249133, 150.896514.

Photograph 6 - Overview of the middle area of the site looking south. Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.252001, 150.89365..

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Photograph 7 - Overview of bore hole 9 (BH9) with the material of interest pictured. Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): -32.252001, 150.89365.

Photograph 8 - Overview of the middle area of the site looking south Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): - -32.252001, 150.89365.

CSTCS. COMPACIIVIL & JUIL LGJUILG JULIAUUS - J - 1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738 Phone: 02 9675 7522 Fax: 02 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

Photograph 9 - Overview of the front area of the site looking to the north west. Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): - -32.252001, 150.89365.

Photograph 10 - Overview of the front area of the site looking to the north west. Located at the back area of 1 Hunter Street, Muswellbrook NSW 2333 (Lot1 of DP995228). Approximate GPS Coordinates of (GDA94): - -32.252001, 150.89365.

C.S.T.S. Phone: 02 9675 7522 Email: office@csts.net.au Web: www.csts.net.au

Appendix C: Laboratory Results

💸 eurofins

mgt

Sydney Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400 Email: EnviroSampleNSW@eurofins.com.au Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: EnvIroSampleQLD@eurofins.com.au Melbourne

2 Kingstor: Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: EnviroSampleVic@eurofins.com.au

.

CHAIN OF CUSTODY RECORD

LIENT DETAILS	0070			0	A			Karl@csts.net.au				L		-		ter:	-lec C	inter :				T	Page	1	of	1					
Company Name :	CSTS			-	tact N	_	_	_	-	_					_	_	-	chase (_	_	10	oice@	csts.n	et.au			COC Num)er :			
office Address :	1/78 Ower	1 Street,		Proj	ject M	anag	er :	5	Shan	an M	cman	nus			_		Proj	ect Nu	mber;		SII	5183					Eurofins	mgt quot	e ID :	19082	2CST
Glendenning	NSW 2761			Ema	ail for	resu	lts :	ļ	Karl	@cs	sts.ne	et.au					Proj	ect Na	me:		Hur	iter Stre	et - Mu	swellbro	ok		Data outpu	It format:			
				1									Analyte	5			-!								Some co	mmon holdir	ng times (with information con	correct pr	eservation		
pecial Directions	& Comments :																T							Wa	ters	i di fattifai	E HOLTE HEALTH CONT	alor this lea	So		-
																						BTE	K, MAH, V			14 days	DIEN				
									- 1												1 1			enols, Pe	sticides	7 days		MAH, VO	C ols, Pesticio		14
											3												y Metais			6 months		Metals	ols, Pesticio	185	14
				1							12												ury, CrVI			28 days	TIGUTT	y, CrVI			6 n
																			1				blologica	l testing		24 hours		iological te	etion		28
				1							1	7 1												Nitrite, To	tal N	2 days	Anions		saung		28
									-			5										Solid	s - TSS,	TDS etc		7 days			and FOX	CrS	24
urofins (mgt DI wate	er batch number							- -	aile		Â											Ferro	ous iron			7 days	ASLP,				7 d
ero una i mar ni man	er weten normolis			Moisture			Asbestos ID	ASS Field	ASS Detailed		A																- I - I - I - I - I - I - I - I - I - I				
Sa	ample ID	Date	Matrix	oist	B7A	B15	spec	SS	SS		The of											Containe	rs:							Sample c	
				ž	B	à	As	¥	¥.	7 9	1 2											1LP	250P	125P	60ml plas	tic 40mL via	al 200ml glas	ss Jar	Zip look bi	Sample c	amment
1	BH1	23/04/2024	S		X	х	_	-	_																			x	x		
2	BH2	23/04/2024	S	-	X	х			_	_	_																	x	x		
3	BH3	23/04/2024	S		X		х	_	_	_	_						1		_						1			x	x		
4	BH4	23/04/2024	S	-	X		x	-		_	4	1	-	-						_				_		_		х	x		
5	BH5	23/04/2024	S	-	х		х	-	-	_	X	3	_	-	-	_			_	_				_				X	x		
6	BH6	23/04/2024	S		х		х	-	-	-	-		_	-		_		_	_	_							_	x	x		
7	BH7	23/04/2024	S		X	-	х	-	-+-		-			-		_	-	-		-		_					_	x	x		
8	BH8	23/04/2024	S		X		х	-	-		-		-	-	_	_			-	-								X	x		
9	BH9	23/04/2024	S	+	X	X		-	-	+	-		_	-					-									×	x	1	
	BH10 BH11	23/04/2024	S		X	x	_	-	-					-				-	-	_			·			-		x	x		
	BH11 BH12	23/04/2024	s	-	X X	X		+	-		-	-	-	-			-			-		_				-		×	X		
_	BH12 BH13	23/04/2024	s	-	X	X	_	+	-			+	_							-							_	x	x		
	BH14	23/04/2024	S	+	X	X.		+	-			++		-			+	-									_	x	x		
	BH15	23/04/2024	s	1	X	X	_	+	-		+	++			-		-	-	+	-			_				-	X	x		
	BH16	23/04/2024	s		x	x		+		-	+	++		-		-	+ +		-	-		_						X	X		
	BH17	23/04/2024	s	1	X	x	-	+	-	-	-	+						-	-	-				-	-		-	x	x		
	BH18	23/04/2024	s		x	x		-	-		-	+		-		-		-	-	-				-	-	-		x			
	BH19	23/04/2024	S	1	X	x	_	+	+	-	+	+		-	-	-			+								_	X	x		
	BH20	23/04/2024	s	1	X	X			-											-								X	X		
	BH17A	23/04/2024	S		x	x			-	-	-				-				-	-		_				-		X	-		
22	BH8A	23/04/2024	S		x	х					1																_	x			
23																											-	† î	-		
24																								1	-		_	-	1		_
25																															
			_			La	borato	ory St	taff						T	urn ar	ound t	ime							Metho	d Of Shipme	nt			Temperature of	n arrival
linquished By:	K.D		Receive		-	en								_		_							ourier							16-2	
ite & Time::	24/04/24		Date &	Time	12	n	9		1	• 9	2		DAY [z day		3 DAY	Y 🗌	J			_	land Deli	vered						Report number	:
gnature:	No.1		Signati	ure:	(7	-	-	5			/		DAY	7	10 DAY								ostal Consign	ment # :						10912	02

Compaction & Soil Testing 1/78 Owen St Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	

Karl Davis

Report Project name Project ID Received Date 1091202-S HUNTER STREET - MUSWELLBROOK SII 5183 Apr 24, 2024

Client Sample ID			G01 BH1	G01 BH2	G01 BH3	^{G01} BH4
Sample Matrix			Soil	Soil	Soil	Soil
			S24-	S24-	S24-	S24-
Eurofins Sample No.			Ap0067386	Ap0067387	Ap0067388	Ap0067389
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		_				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	52	120	< 50	< 50
TRH C29-C36	50	mg/kg	100	70	< 50	69
TRH C10-C36 (Total)	50	mg/kg	152	190	< 50	69
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	110	170	< 100	< 100
TRH >C34-C40	100	mg/kg	160	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	270	170	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	97	88	111	108
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			G01 BH1	G01BH2	G01BH3	G01 BH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067386	S24- Ap0067387	S24- Ap0067388	S24- Ap0067389
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit	Apr 23, 2024	701 23, 2024	Api 23, 2024	Api 20, 2024
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5	malka	< 0 F	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene Fluoranthene	0.5	mg/kg mg/kg	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1		70	58	70	84
p-Terphenyl-d14 (surr.)	1	%	82	80	83	109
Organochlorine Pesticides	•	70	02	00	00	105
Chlordanes - Total	0.1	mg/kg	< 1	< 1	< 1	< 1
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4.4-DDD 4.4'-DDE	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
a-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
b-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
d-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dieldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan II	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin ketone	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Methoxychlor	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toxaphene	0.5	mg/kg	< 10	< 10	< 10	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 1	< 1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	90	95	63	135
Tetrachloro-m-xylene (surr.)	1	%	82	76	81	103
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bolstar	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorfenvinphos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorpyrifos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorpyrifos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Coumaphos	2	mg/kg	< 5	< 5	< 5	< 5
Demeton-S	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Demeton-O	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Diazinon	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorvos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			G01BH1	G01BH2	G01BH3	G01 BH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067386	S24- Ap0067387	S24- Ap0067388	S24- Ap0067389
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit		•	•	•
Organophosphorus Pesticides	2011	U.I.I				
Dimethoate	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Disulfoton	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
EPN	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethoprop	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethyl parathion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fenitrothion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fensulfothion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fenthion	0.2	mg/kg	< 0.5		< 0.5	< 0.5
renthion Malathion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
				< 0.5		
Merphos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Methyl parathion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Mevinphos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Monocrotophos	2	mg/kg	< 5	< 5	< 5	< 5
Naled	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Omethoate	2	mg/kg	< 5	< 5	< 5	< 5
Phorate	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pirimiphos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrazophos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ronnel	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Terbufos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachlorvinphos	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tokuthion	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloronate	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Triphenylphosphate (surr.)	1	%	85	74	86	92
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1221	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1232	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1242	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1248	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1254	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1260	0.1	mg/kg	< 1	< 1	< 1	< 1
Total PCB*	0.1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	90	95	63	135
Tetrachloro-m-xylene (surr.)	1	%	82	76	81	103
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID			G01 BH1	G01BH2	G01BH3	G01BH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067386	S24- Ap0067387	S24- Ap0067388	S24- Ap0067389
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 1	< 1	< 1	< 1
Total cresols*	0.5	mg/kg	< 1	< 1	< 1	< 1
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 2	< 2	< 2	< 2
Phenol-d6 (surr.)	1	%	70	INT	78	83
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	6.6	4.2	6.8	6.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	70	43	42
Copper	5	mg/kg	14	26	18	24
Lead	5	mg/kg	8.7	7.8	9.8	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	17	72	39	33
Zinc	5	mg/kg	25	49	46	71
Sample Properties						
% Moisture	1	%	13	18	17	33

Client Sample ID			BH5	BH6	G01 BH7	BH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067390	S24- Ap0067391	S24- Ap0067392	S24- Ap0067393
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			DUE	BH6	G01BH7	BH8
-			BH5 Soil	Soil	Soil	Soil
Sample Matrix			S011 S24-	S011 S24-	S011 S24-	S011 S24-
Eurofins Sample No.			S24- Ap0067390	Ap0067391	Ap0067392	Ap0067393
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	78	92	101	120
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons	0.0	1.1.9/1.9				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	00				
Fluoranthene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg %	< 0.5 61	< 0.5	< 0.5	< 0.5 68
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%		69	70	67
Organochlorine Pesticides		70	63	09	75	07
	0.1	mallea	.0.1	.01		.01
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Dieldrin Endogulfan I	0.05	mg/kg	< 0.05	< 0.05	1.2	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg mg/kg	< 0.05 < 0.05	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05					

Client Sample ID			BH5	BH6	G01BH7	BH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067390	S24- Ap0067391	S24- Ap0067392	S24- Ap0067393
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides		U.I.I				
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05		< 0.05	< 0.05	< 0.5	< 0.05
Toxaphene	0.05	mg/kg	< 0.05	< 0.05	< 10	< 0.05
•		mg/kg	< 0.05		1.2	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg		< 0.05	< 0.5	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	1.2	< 0.05
Vic EPA IWRG 621 OCP (Total)*		mg/kg	-			
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	68	93	89	87
Tetrachloro-m-xylene (surr.)	1	%	69	71	81	68
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 5	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 5	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 5	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
Triphenylphosphate (surr.)	1	тід/к <u>д</u> %	< 0.2 66	79	< 0.5	74

Client Sample ID			BH5	BH6	G01BH7	BH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067390	S24- Ap0067391	S24- Ap0067392	S24- Ap0067393
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	Lon	Onit				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	<1	< 0.1
Dibutylchlorendate (surr.)	1	%	68	93	89	87
Tetrachloro-m-xylene (surr.)	1	%	69	71	81	68
Phenois (Halogenated)		70		,,		
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	<1	< 1	<1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	<1	<1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	<1	< 1	< 1	< 1
Phenois (non-Halogenated)	1	iiig/kg				
	20	mallea	. 20	. 20	. 20	. 20
2-Cyclohexyl-4.6-dinitrophenol	<u> </u>	mg/kg	< 20 < 5	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	1	mg/kg		< 1	< 1	< 5
2-Nitrophenol	0.5	mg/kg	< 1 < 0.5			
2.4-Dimethylphenol	5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	0.2	mg/kg	< 0.2	< 0.2		< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.5	< 0.2
3&4-Methylphenol (m&p-Cresol) Total cresols*	0.4	mg/kg				
		mg/kg	< 0.5	< 0.5	< 1	< 0.5
4-Nitrophenol Dinoseb	<u> </u>	mg/kg mg/kg	< 5 < 20	< 5	< 5	< 5
Phenol	0.5	mg/kg	< 20	< 0.5	< 20	< 2.0
Phenol-d6 (surr.)	1	<u>ттд/кд</u> %	< 0.5 57	63	59	<u>< 0.5</u> 59
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals	20	I IIIg/Kg	× 20	< 20	< 20	< 20
Arsenic	2	malka	3.8	< 2	4.3	4.7
		mg/kg				
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	41 21	36	33	<u>32</u> 18
Copper	5	mg/kg		13	18	
Lead	5	mg/kg	16	5.7	27	8.9
Mercury Niekol	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	32	21	30	33
Zinc	5	mg/kg	66	19	77	43
Sample Properties % Moisture	1	%	21	22	16	16

Client Sample ID			BH9	BH10	BH11	BH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067394	S24- Ap0067395	S24- Ap0067396	S24- Ap0067397
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	2011	Onit				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX	100	l ing/kg	< 100			
Benzene	0.1	mallea	.01	.01	.01	.01
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2		< 0.2
o-Xylene		mg/kg	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg %		< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	-	70	92	96	104	101
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	83	71	71	70
p-Terphenyl-d14 (surr.)	1	%	84	68	69	68

Client Sample ID			BH9	BH10	BH11	BH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067394	S24- Ap0067395	S24- Ap0067396	S24- Ap0067397
•			Apr 23, 2024	-	-	-
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-НСН	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin Endrin oldebude	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg		< 0.05	< 0.05	
g-HCH (Lindane) Heptachlor	0.05	mg/kg mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.00	mg/kg	< 0.05	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.03	< 0.1	< 0.05	< 0.03
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	86	91	89	90
Tetrachloro-m-xylene (surr.)	1	%	86	71	73	71
Organophosphorus Pesticides	· ·	70				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			BH9	BH10	BH11	BH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067394	S24- Ap0067395	S24- Ap0067396	S24- Ap0067397
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	LOIN	Onit				
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Metry parathon Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	91	76	77	78
Polychlorinated Biphenyls		,,,				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	86	91	89	90
Tetrachloro-m-xylene (surr.)	1	%	86	71	73	71
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	<1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)	·					
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	62	59	61	62
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH9	BH10	BH11	BH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067394	S24- Ap0067395	S24- Ap0067396	S24- Ap0067397
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.6	2.3	2.9	2.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	39	58	62	58
Copper	5	mg/kg	17	20	18	19
Lead	5	mg/kg	8.2	5.4	5.7	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	38	70	51	49
Zinc	5	mg/kg	40	22	21	22
Sample Properties						
% Moisture	1	%	19	20	24	23

Client Sample ID			G01BH13	^{G01} BH14	BH15	BH16	
Sample Matrix			Soil	Soil	Soil	Soil	
			S24-	S24-	S24-	S24-	
Eurofins Sample No.			Ap0067398	Ap0067399	Ap0067400	Ap0067401	
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	230	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	290	< 50	< 50	< 50	
TRH C10-C36 (Total)	50	mg/kg	520	< 50	< 50	< 50	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	470	< 100	< 100	< 100	
TRH >C34-C40	100	mg/kg	110	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	mg/kg	580	< 100	< 100	< 100	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	91	118	88	87	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	

Client Sample ID			G01BH13	G01BH14	BH15	BH16
Sample Matrix			Soil	Soil	Soil	Soil
			S24-	S24-	S24-	S24-
Eurofins Sample No.			Ap0067398	Ap0067399	Ap0067400	Ap0067401
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene Purces	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	1	mg/kg %	< 0.5 80	69	< 0.5 70	71
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	89	82	66	67
Organochlorine Pesticides	I	70	09	02	00	07
	0.1	m a/l (a	. 1	. 1	.01	- 0.1
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
4.4-DDD 4.4'-DDE	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg	< 0.5 < 0.5	< 0.5	< 0.05	< 0.05
a-HCH	0.05	mg/kg mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 10	< 10	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	69	88	90	85
Tetrachloro-m-xylene (surr.)	1	%	82	78	70	71
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2

Client Sample ID			G01BH13	^{G01} BH14	BH15	BH16
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067398	S24- Ap0067399	S24- Ap0067400	S24- Ap0067401
•			Apr 23, 2024	-	-	-
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		1				
Coumaphos	2	mg/kg	< 5	< 5	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Fenthion Malathion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Methyl parathion Mevinphos	0.2	mg/kg mg/kg	< 0.5	< 0.5 < 0.5	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Naled	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Omethoate	2	mg/kg	< 5	< 5	< 2	< 2
Phorate	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	84	78	75	75
Polychlorinated Biphenyls		,,,				
Aroclor-1016	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	69	88	90	85
Tetrachloro-m-xylene (surr.)	1	%	82	78	70	71
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID			G01BH13	^{G01} BH14	BH15	BH16
Sample Matrix			Soil	Soil	Soil	Soil
			S24-	S24-	S24-	S24-
Eurofins Sample No.			Ap0067398	Ap0067399	Ap0067400	Ap0067401
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Phenols (Halogenated)	1	-				_
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.5	< 0.5	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 1	< 1	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 1	< 1	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 2	< 2	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	63	69	61	60
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	< 2	10	3.5	4.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	66	12	75	58
Copper	5	mg/kg	19	11	24	18
Lead	5	mg/kg	13	19	5.6	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	37	7.1	90	37
Zinc	5	mg/kg	53	17	24	57
Sample Properties						
% Moisture	1	%	17	15	22	16

Client Sample ID			BH17	G01BH18	BH19	BH20
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067402	S24- Ap0067403	S24- Ap0067404	S24- Ap0067405
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	100	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	100	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	120	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	120	< 100	< 100

Client Sample ID			BH17	G01 BH18	BH19	BH20
Sample Matrix			Soil	Soil	Soil	Soil
			S24-	S24-	S24-	S24-
Eurofins Sample No.			Ap0067402	Ap0067403	Ap0067404	Ap0067405
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	112	99	105
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	74	63	77	68
p-Terphenyl-d14 (surr.)	1	%	68	82	73	66
Organochlorine Pesticides		-				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05

Client Sample ID			BH17	G01BH18	BH19	BH20
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067402	S24- Ap0067403	S24- Ap0067404	S24- Ap0067405
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Heptachlor	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Vethoxychlor	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 10	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.00	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	75	104	99	89
Tetrachloro-m-xylene (surr.)	1	%	73	78	79	69
Organophosphorus Pesticides		70	14	10	13	- 03
	0.2	mallea	.0.2	.05	.0.2	< 0.2
Azinphos-methyl Bolstar	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Chlorfenvinphos		mg/kg				
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 5	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 5	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 5	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
^D yrazophos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2

Client Sample ID			BH17	G01 BH18	BH19	BH20
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S24- Ap0067402	S24- Ap0067403	S24- Ap0067404	S24- Ap0067405
Date Sampled			Apr 23, 2024	Apr 23, 2024	Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	75	104	99	89
Tetrachloro-m-xylene (surr.)	1	%	74	78	79	69
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)		-				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.5	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 1	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 1	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 2	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	51	66	61	58
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	3.4	5.2	4.3	3.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	67	66	64	44
Copper	5	mg/kg	18	23	20	19
Lead	5	mg/kg	6.2	18	9.0	6.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	55	44	53	39
Zinc	5	mg/kg	16	99	29	33
Sample Properties		%				

Client Sample ID			BH17A	BH8A
Sample Matrix			Soil	Soil
			S24-	S24-
Eurofins Sample No.			Ap0067406	Ap0067407
Date Sampled			Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
втех				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	115	117
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	74	70
p-Terphenyl-d14 (surr.)	1	%	69	66

Client Sample ID			BH17A	BH8A
Sample Matrix			Soil	Soil
			S24-	S24-
Eurofins Sample No.			Ap0067406	Ap0067407
Date Sampled			Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	78	86
Tetrachloro-m-xylene (surr.)	1	%	74	69
Organophosphorus Pesticides				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN Ethion	0.2	mg/kg	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2
Ethoprop Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID Sample Matrix			BH17A Soil S24-	BH8A Soil S24-
Eurofins Sample No.			Ap0067406	Ap0067407
Date Sampled			Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	71	75
Polychlorinated Biphenyls				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	78	86
Tetrachloro-m-xylene (surr.)	1	%	74	69
Phenols (Halogenated)				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1
Phenols (non-Halogenated)				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	55	59
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20

Client Sample ID			BH17A	BH8A
Sample Matrix			Soil	Soil
Eurofins Sample No.			S24- Ap0067406	S24- Ap0067407
Date Sampled			Apr 23, 2024	Apr 23, 2024
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	2.3	4.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	49	40
Copper	5	mg/kg	14	18
Lead	5	mg/kg	< 5	8.5
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	41	40
Zinc	5	mg/kg	12	36
Sample Properties				
% Moisture	1	%	5.0	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 02, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 02, 2024	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 02, 2024	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Apr 26, 2024	14 Days
- Method: LTM-GEN-7080 Moisture			

			nvironment Tes	sung A	Australia Pty L	(a						Eurofins ARL Pty I	td	Eurofins ProMicro	Pty Ltd	Eurofins Enviro	onment Testing NZ	Ltd	
	eurofins	ABN: 50 005	085 521									ABN: 91 05 0159 898		ABN: 47 009 120 549		NZBN: 9429046024	4954		
web: wv	ww.eurofins.com.au EnviroSales@eurofins.com	6 Monterey R Dandenong S VIC 3175 +61 3 8564 5	South Grovedale VIC 3216	5000 1	Sydney et 179 Magowar Re Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217	Canberra bad Unit 1,2 Dacre Street Mitchell ACT 2911 0 +61 2 6113 8091 NATA# 1261 Site# 25466	Murar QLD T: +61 NATA	Smallwoo rie	od Place 4600	Mayfield NSW 23 +61 2 49 NATA# 1	t Drive West 04 168 8448	Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370		Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554		Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327	Auckland (Focus) Unit C1/4 Pacific Rise, Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290	Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402
	mpany Name: dress:	Compaction 1/78 Owen S Glendenning NSW 2761		ng				R(Pl	rder N eport none: ax:	#:	02 9	1202 675 7522 675 7544			Rece Due: Prior Cont		Apr 24, 2024 May 3, 2024 5 Day Karl Davis		
	oject Name: oject ID:	HUNTER S ⁻ SII 5183	TREET - MU	SWEL	LLBROOK									E	Eurofin	s Analytical S	Services Manag	jer : Adam Ba	teup
							Asbestos - AS4964	Eurofins Suite B15	Moisture Set	Eurofins Suite B7A									
		Sa	ample Detail				4												
Sydı	ney Laboratory -						X	x	x	x									
	ney Laboratory - rnal Laboratory							x	x	x									
	rnal Laboratory			7	Matrix	LAB ID		x	x	x									
Exte	rnal Laboratory Sample ID	NATA # 1261	Site # 18217	7		LAB ID 524-Ap0067386		x	x	x									
Exte No	Sample ID BH1	NATA # 1261 Sample Date	Site # 18217	7			x												
Exte No 1 2	rnal Laboratory Sample ID BH1 BH2	NATA # 1261 Sample Date Apr 23, 2024	Site # 18217	7 Soil	1	S24-Ap0067386	x	x	x	x									
Exte No 1 2 3	BH1 Image: mail and second s	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217	7 Soil Soil		S24-Ap0067386 S24-Ap0067387	x	x x x	x x x	x x x									
Exte No 1 2 3 4	BH1 Image: mail and second s	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217	7 Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388	x x x x x x	x x x x	X X X X	X X X X									
Exte No 1 2 3 4 5	rnal Laboratory Sample ID BH1 BH2 BH3 BH4 BH5	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217	7 Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389	x x x x x x x x	X X X X X	X X X X X X X	x x x x x									
Exte No 1 2 3 4 5 6	Inal Laboratory Sample ID BH1 BH2 BH3 BH4 BH5 BH6	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217	Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390	x x x x x x x x	X X X X X X	X X X X X X	X X X X X X X									
Exte No 1 2 3 4 5 6 7	Inal Laboratory Sample ID BH1 BH2 BH3 BH4 BH5 BH6 BH7	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217	7 Soil Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391	x x x x x x x x x x	X X X X X X X	X X X X X X X	x x x x x x x x x x									
Exte No 1 2 3 4 5 6 7 8	rnal Laboratory Sample ID BH1 / BH2 / BH3 / BH4 / BH5 / BH6 / BH7 / BH8 /	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217	7 Soil Soil Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392	x x x x x x x x x x x x x	x x x x x x x x x x x x	x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X									
Exte No 1 2 3 4 5 6 7 8	Inal Laboratory Sample ID BH1 / BH2 / BH3 / BH4 / BH5 / BH6 / BH8 / BH9 /	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217	Soil Soil Soil Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393	x x x x x x x x x x x x x x x x	X X X X X X X X X X	x x x x x x x x x x x x x	x x x x x x x x x x x x x x x									
Exte No 1 2 3 4 5 5 6 7 8 9 10	rnal Laboratory Sample ID BH1 BH2 BH3 BH4 BH5 BH6 BH7 BH8 BH9 BH10	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217	Soil Soil Soil Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393 S24-Ap0067394	X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x									
Exte No 1 2 3 4 5 6 7 8 9	rnal Laboratory Sample ID BH1 / BH2 / BH3 / BH4 / BH5 / BH6 / BH7 / BH8 / BH9 / BH10 /	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217	Soil Soil Soil Soil Soil Soil Soil Soil		S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067393 S24-Ap0067393 S24-Ap0067394 S24-Ap0067395	X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x	x x									

••		ronment Testing	Australia Pty Ltd							rofins ARL Pty			o Pty Ltd		onment Testing NZ	_td	
🔅 eurofins	ABN: 50 005 085									N: 91 05 0159 898	8	ABN: 47 009 120 549		NZBN: 942904602			-
web: www.eurofins.com.au email: EnviroSales@eurofins.com	6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000	6 Monterey Road 19/8 Lewalan Street 179 Magowar Road U Dandenong South Grovedale Girraween M VIC 3175 VIC 3216 NSW 2145 A +61 3 8564 5000 +61 3 8564 5000 +61 2 9900 8400 + NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261		ad Unit 1,2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261		1/21 Smallwood Place Murarrie QLD 4172 T: +61 7 3902 4600 NATA# 1261		Newcastle 26 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079 & 25289		Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370	Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554		Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327	Auckland (Focus) Unit C1/4 Pacific Rise, Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290	Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402	
Company Name: Address:	Compaction & 1/78 Owen St Glendenning NSW 2761	Soil Testing				Re Ph	der N eport none: ix:	#:	1091202 02 9675 02 9675	7522			Due: Prio		Apr 24, 2024 May 3, 2024 5 Day Karl Davis	11:43 PM	
Project Name: Project ID:	HUNTER STRI SII 5183	EET - MUSWE	LLBROOK										Eurofir	ns Analytical	Services Manag	er : Adam Ba	teup
		ple Detail			Asbestos - AS4964	Eurofins Suite B15	Moisture Set	Eurofins Suite B7A									
Sydney Laboratory -	NATA # 1261 Sit	te # 18217			х	х	Х	х									
14 BH14	Apr 23, 2024	Soil	S	24-Ap0067399	Х	Х	Х	х									
15 BH15	Apr 23, 2024	Soil	S	24-Ap0067400	х	Х	Х	Х									
16 BH16	Apr 23, 2024	Soil	S	24-Ap0067401	х	Х	Х	Х									
17 BH17	Apr 23, 2024	Soil	S	24-Ap0067402	х	Х	Х	Х									
18 BH18	Apr 23, 2024	Soil	S	24-Ap0067403	х	х	х	х									
19 BH19	Apr 23, 2024	Soil	S	24-Ap0067404	х	х	х	х									
20 BH20 /	Apr 23, 2024	Soil	S	24-Ap0067405	Х	х	Х	Х									
21 BH17A	Apr 23, 2024	Soil	S	24-Ap0067406		х	х	Х									
22 BH8A /	Apr 23, 2024	Soil	S	24-Ap0067407		х	х	Х									

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 6. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ppm: parts per million
μg/L: micrograms per litre	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony Forming Unit	Colour: Pt-Co Units (CU)	

Terms

Unite

Terms	
APHA	American Public Health Association
CEC	Cation Exchange Capacity
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 6.0
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR:	No Limit
Results between 10-20 times the LOR:	RPD must lie between 0-50%
Results >20 times the LOR:	RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · ·			
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank				0.0	1 0.00	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.05		0.5	Pass	
Method Blank	iiig/kg	< 0.5		0.0	1 433	
Organophosphorus Pesticides						
Azinphos-methyl	mg/kg	< 0.2		0.2	Pass	
Bolstar	mg/kg	< 0.2		0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2		0.2	Pass	
Coumaphos	mg/kg	< 2		2	Pass	
Demeton-S	mg/kg	< 0.2		0.2	Pass	
Demeton-O	mg/kg	< 0.2		0.2	Pass	
Diazinon	mg/kg	< 0.2		0.2	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		· · · · · ·	 		
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank	ling/kg	< 0.1	0.1	1 435	
Phenois (Halogenated)		[[
2-Chlorophenol	ma/ka	< 0.5	0.5	Booo	
2.4-Dichlorophenol	mg/kg		0.5	Pass	
÷	mg/kg	< 0.5		Pass	
2.4.5-Trichlorophenol	mg/kg	<1	<u>1</u>	Pass	
2.4.6-Trichlorophenol	mg/kg	<1	-	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	<1	1	Pass	
Pentachlorophenol	mg/kg	<1	1	Pass	
Tetrachlorophenols - Total	mg/kg	< 10	10	Pass	
Method Blank		<u>г</u>			
Phenols (non-Halogenated)			 		
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	 5	Pass	
2-Nitrophenol	mg/kg	< 1	 1	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	 0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	 5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	 0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4-Nitrophenol	mg/kg	< 5	5	Pass	
Dinoseb	mg/kg	< 20	20	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank			 -		
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank				-	
Phenols (non-Halogenated)					
Total Non-Halogenated Phenol*	mg/kg	-	20	N/A	
Method Blank					
Total Recoverable Hydrocarbons					
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				[
Total Recoverable Hydrocarbons					
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Total Recoverable Hydrocarbons					
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH >C34-C40	mg/kg	< 100	100	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	91	70-130	Pass	
Acenaphthylene	%	94	70-130	Pass	
Anthracene	%	91	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	94	70-130	Pass	
Benzo(b&j)fluoranthene	%	92	70-130	Pass	
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	100	70-130	Pass	
Chrysene	%	101	70-130	Pass	
Dibenz(a.h)anthracene	%	84	70-130	Pass	
Fluoranthene	%	97	70-130	Pass	
Fluorene	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	89	70-130	Pass	
Naphthalene	%	92	70-130	Pass	
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	97	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	102	70-130	Pass	
4.4'-DDD	%	103	70-130	Pass	
4.4'-DDE	%	99	70-130	Pass	
4.4'-DDT	%	113	70-130	Pass	
a-HCH	%	98	70-130	Pass	
Aldrin	%	96	70-130	Pass	
b-HCH	%	94	70-130	Pass	
d-HCH	%	96	70-130	Pass	
Dieldrin	%	98	70-130	Pass	
Endosulfan I	%	95	70-130	Pass	
Endosulfan II	%	96	70-130	Pass	
Endosulfan sulphate	%	111	70-130	Pass	
Endrin	%	110	70-130	Pass	
Endrin aldehyde	%	96	70-130	Pass	
Endrin ketone	%	106	70-130	Pass	
g-HCH (Lindane)	%	100	70-130	Pass	
Heptachlor	%	102	70-130	Pass	
Heptachlor epoxide	%	100	70-130	Pass	
Hexachlorobenzene	%	95	70-130	Pass	
Methoxychlor	%	106	70-130	Pass	
LCS - % Recovery					
Organophosphorus Pesticides					
Diazinon	%	116	70-130	Pass	
Dimethoate	%	102	70-130	Pass	
Ethion	%	113	70-130	Pass	
Fenitrothion	%	93	70-130	Pass	
Methyl parathion	%	114	70-130	Pass	
Mevinphos	%	107	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1016	%	88	70-130	Pass	
Aroclor-1260	%	99	70-130	Pass	
LCS - % Recovery	///			1 435	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenols (Halogenated)	•				
2-Chlorophenol	%	88	25-140	Pass	
2.4-Dichlorophenol	%	93	25-140	Pass	
2.4.5-Trichlorophenol	%	80	25-140	Pass	
2.4.6-Trichlorophenol	%	83	25-140	Pass	
2.6-Dichlorophenol	%	101	25-140	Pass	
4-Chloro-3-methylphenol	%	94	25-140	Pass	
Pentachlorophenol	%	82	25-140	Pass	
Tetrachlorophenols - Total	%	85	25-140	Pass	
LCS - % Recovery					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	%	100	25-140	Pass	
2-Methyl-4.6-dinitrophenol	%	91	25-140	Pass	
2-Nitrophenol	%	101	25-140	Pass	
2.4-Dimethylphenol	%	95	25-140	Pass	
2.4-Dinitrophenol	%	87	25-140	Pass	
2-Methylphenol (o-Cresol)	%	95	25-140	Pass	
3&4-Methylphenol (m&p-Cresol)	%	92	25-140	Pass	
4-Nitrophenol	%	83	25-140	Pass	
Dinoseb	%	100	25-140	Pass	
Phenol	%	95	25-140	Pass	
LCS - % Recovery	•		· · ·	•	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	87	70-130	Pass	
TRH C6-C10	%	83	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	82	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	97	70-130	Pass	
o-Xylene	%	81	70-130	Pass	
Xylenes - Total*	%	92	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	76	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	101	80-120	Pass	
Cadmium	%	95	80-120	Pass	
Chromium	%	88	80-120	Pass	
Copper	%	85	80-120	Pass	
Lead	%	82	80-120	Pass	
Mercury	%	99	80-120	Pass	
Nickel	%	92	80-120	Pass	
Zinc	%	90	80-120	Pass	
LCS - % Recovery		· · · ·			
Total Recoverable Hydrocarbons					
TRH C10-C14	%	78	70-130	Pass	
TRH >C10-C16	%	71	70-130	Pass	
LCS - % Recovery		· · ·			
Total Recoverable Hydrocarbons					
TRH C10-C14	%	78	70-130	Pass	
	/0	10	70-130	1 433	

T	est		Units	Result 1		eptance imits	Pass Limits	Qualifying Code
LCS - % Recovery				1				
Total Recoverable Hydrocarb	ons							
TRH C10-C14			%	78	70)-130	Pass	
TRH >C10-C16			%	77)-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acce	eptance	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarb	ons			Result 1				
TRH C6-C9	S24-Ap0072897	NCP	%	79	70)-130	Pass	
TRH C6-C10	S24-Ap0072897	NCP	%	80	70)-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S24-Ap0072897	NCP	%	87	70)-130	Pass	
Toluene	S24-Ap0072897	NCP	%	91)-130	Pass	
Ethylbenzene	S24-Ap0072897	NCP	%	96)-130	Pass	
m&p-Xylenes	S24-Ap0072897	NCP	%	100		0-130	Pass	
o-Xylene	S24-Ap0072897	NCP	%	99		0-130	Pass	
Xylenes - Total*	S24-Ap0072897	NCP	%	100)-130)-130	Pass	
Spike - % Recovery	324-Ap0072897	NCF	/0	100		<u>-130 </u>	r ass	
	ana 2012 NEDM Frank	lene		Deput 1				
Total Recoverable Hydrocarb			0/	Result 1	70	100	Deee	
Naphthalene	S24-Ap0072897	NCP	%	78		0-130	Pass	
Spike - % Recovery				Desilitat		T		
Organochlorine Pesticides	004.4.0000575	NOD		Result 1				
Chlordanes - Total	S24-Ap0066575	NCP	%	89		0-130	Pass	
4.4'-DDD	S24-Ap0066575	NCP	%	93		0-130	Pass	
4.4'-DDE	S24-Ap0066575	NCP	%	89)-130	Pass	
4.4'-DDT	S24-Ap0066575	NCP	%	105)-130	Pass	
a-HCH	S24-Ap0066575	NCP	%	85)-130	Pass	
Aldrin	S24-Ap0066575	NCP	%	87)-130	Pass	
b-HCH	S24-Ap0066575	NCP	%	77	70)-130	Pass	
d-HCH	S24-Ap0066575	NCP	%	80	70)-130	Pass	
Dieldrin	S24-Ap0066575	NCP	%	90	70)-130	Pass	
Endosulfan I	S24-Ap0066575	NCP	%	92	70)-130	Pass	
Endosulfan II	S24-Ap0066575	NCP	%	89	70	0-130	Pass	
Endosulfan sulphate	S24-Ap0066575	NCP	%	111	70	0-130	Pass	
Endrin	S24-Ap0066575	NCP	%	104	70)-130	Pass	
Endrin aldehyde	S24-Ap0066575	NCP	%	92	70)-130	Pass	
Endrin ketone	S24-Ap0066575	NCP	%	106	70)-130	Pass	
g-HCH (Lindane)	S24-Ap0066575	NCP	%	91	70)-130	Pass	
Heptachlor	S24-Ap0066575	NCP	%	92		0-130	Pass	
Heptachlor epoxide	S24-Ap0066575	NCP	%	88)-130	Pass	
Hexachlorobenzene	S24-Ap0066575	NCP	%	83		0-130	Pass	
Methoxychlor	S24-Ap0066575	NCP	%	100		0-130	Pass	
Spike - % Recovery			70			100	1 400	
Organophosphorus Pesticide	<u> </u>			Result 1				
Diazinon	S24-Ap0067386	СР	%	75	70)-130	Pass	
Dimethoate	S24-Ap0007380	NCP	%	79)-130	Pass	
Ethion	S24-Ap0072379	CP	%	94)-130	Pass	
Methyl parathion	S24-Ap0072379	NCP	%	77)-130	Pass	
Mevinphos	S24-Ap0072379	NCP	%	87	70	0-130	Pass	
Spike - % Recovery				D				
Polychlorinated Biphenyls				Result 1				
Aroclor-1016	S24-Ap0066575	NCP	%	75		0-130	Pass	
Aroclor-1260	S24-Ap0066575	NCP	%	90	70)-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Phenols (Halogenated)	1			Result 1					
2-Chlorophenol	S24-Ap0068469	NCP	%	82			30-130	Pass	
4-Chloro-3-methylphenol	S24-Ap0068469	NCP	%	75			30-130	Pass	
Spike - % Recovery				1			1	r	
Phenols (non-Halogenated)				Result 1					
2-Nitrophenol	S24-Ap0068469	NCP	%	71			30-130	Pass	
Spike - % Recovery							-		
Heavy Metals				Result 1					
Arsenic	S24-Ap0067387	CP	%	80			75-125	Pass	
Cadmium	S24-Ap0067387	CP	%	82			75-125	Pass	
Chromium	S24-Ap0067387	CP	%	90			75-125	Pass	
Copper	S24-Ap0067387	CP	%	83			75-125	Pass	
Lead	S24-Ap0067387	CP	%	80			75-125	Pass	
Mercury	S24-Ap0067387	CP	%	92			75-125	Pass	
Nickel	S24-Ap0067387	СР	%	98			75-125	Pass	
Zinc	S24-Ap0067387	СР	%	87			75-125	Pass	
Spike - % Recovery		1							
Organophosphorus Pesticides				Result 1					
Fenitrothion	S24-Ap0064528	NCP	%	115			70-130	Pass	
Spike - % Recovery	02110001020		,,,				10.00	1 400	
Phenols (Halogenated)				Result 1					
2.4-Dichlorophenol	S24-Ap0059496	NCP	%	85			30-130	Pass	
2.4.5-Trichlorophenol	S24-Ap0059496	NCP	%	86			30-130	Pass	
2.4.6-Trichlorophenol	S24-Ap0059496	NCP	%	94			30-130	Pass	
2.6-Dichlorophenol	S24-Ap0059496	NCP	%	86			30-130	Pass	
Tetrachlorophenols - Total	S24-Ap0059496	NCP	%	85			30-130	Pass	
Spike - % Recovery	324-Ap0039490	NOF	/0	00	I I		30-130	газэ	
				Booult 1				[
Phenols (non-Halogenated)	CO4 4=0050400	NOD	0/	Result 1			20,420	Dees	
2-Cyclohexyl-4.6-dinitrophenol	S24-Ap0059496	NCP	%	76			30-130	Pass	
2.4-Dimethylphenol	S24-Ap0059496	NCP	%	75			30-130	Pass	
2-Methylphenol (o-Cresol)	S24-Ap0059496	NCP	%	85			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S24-Ap0059496	NCP	%	80			30-130	Pass	
4-Nitrophenol	S24-Ap0059496	NCP	%	77			30-130	Pass	
Dinoseb	S24-Ap0059496	NCP	%	78			30-130	Pass	
Phenol	S24-Ap0059496	NCP	%	86			30-130	Pass	
Spike - % Recovery				1	1		1	[
Total Recoverable Hydrocarbons	1	1		Result 1					
TRH C10-C14	S24-Ap0067407	CP	%	88			70-130	Pass	
TRH >C10-C16	S24-Ap0067407	CP	%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				T	1		1		
Sample Properties	1	,		Result 1	Result 2	RPD			
% Moisture	S24-Ap0067393	CP	%	16	18	11	30%	Pass	
Duplicate					1 1		1		
Total Recoverable Hydrocarbons	-			Result 1	Result 2	RPD			
TRH C10-C14	S24-Ap0067396	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S24-Ap0067396	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S24-Ap0067396	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S24-Ap0067396	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S24-Ap0067396	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S24-Ap0067396	СР	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	IS			Result 1	Result 2	RPD			
Acenaphthene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S24-Ap0067396	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S24-Ap0067396	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S24-Ap0067396	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S24-Ap0067396	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	· · ·								
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S24-Ap0067396	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			1		
Organophosphorus Pesticides			1	Result 1	Result 2	RPD			
Azinphos-methyl	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S24-Ap0067396	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Ethion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S24-Ap0067396	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S24-Ap0067396	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S24-Ap0067396	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S24-Ap0067396	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S24-Ap0067396	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S24-Ap0067396	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S24-Ap0067396	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S24-Ap0067396	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S24-Ap0067396	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Phenols (non-Halogenated)			-	Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S24-Ap0067396	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S24-Ap0067396	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Nitrophenol	S24-Ap0067396	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S24-Ap0067396	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S24-Ap0067396	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S24-Ap0067396	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S24-Ap0067396	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S24-Ap0067396	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S24-Ap0067396	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S24-Ap0067397	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S24-Ap0067397	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S24-Ap0067397	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S24-Ap0067397	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S24-Ap0067397	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S24-Ap0067397	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate		0.	mg/ng	1 100	4 100	1	0070	1 400	
Polycyclic Aromatic Hydrocarbor	ns			Result 1	Result 2	RPD			
Acenaphthene	S24-Ap0067397	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S24-Ap0007397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
		CP		< 0.5	< 0.5	<1	30%	Pass	
Chrysene Dibenz(a.h)anthracene	S24-Ap0067397	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S24-Ap0067397	CP CP	mg/kg		< 0.5	<1	30%	Pass	
	S24-Ap0067397	CP CP	mg/kg	< 0.5					
Fluorene	S24-Ap0067397	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S24-Ap0067397		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Decilitat	Devilio				
Organochlorine Pesticides	0044 0007007			Result 1	Result 2	RPD	000/		
Chlordanes - Total	S24-Ap0067397	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S24-Ap0067397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl		CP							

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Coumaphos	S24-Ap0067397	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S24-Ap0067397	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S24-Ap0067397	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S24-Ap0067397	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S24-Ap0067397	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S24-Ap0067397	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S24-Ap0067397	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S24-Ap0067397	CP CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate	324-Ap0007397	UF	піу/ку	< 0.2	< 0.2	<1	30 //	газэ	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S24-Ap0067397	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S24-Ap0067397	CP CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S24-Ap0067397	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S24-Ap0067397	CP CP			< 0.1	<1	30%	Pass	
Aroclor-1242 Aroclor-1248	S24-Ap0067397	CP CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S24-Ap0067397	CP	mg/kg mg/kg	< 0.1 < 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	· · ·	CP					30%	1 1	
	S24-Ap0067397	CP CP	mg/kg	< 0.1	< 0.1	<1		Pass	
Total PCB* Duplicate	S24-Ap0067397	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
				Recult 1	Result 2	RPD			
Phenols (Halogenated) 2-Chlorophenol	624 Ap0067207	СР	malka	Result 1 < 0.5			30%	Pass	
2-Chiorophenol	S24-Ap0067397	CP CP	mg/kg		< 0.5	<1	30%		
· · · · · ·	S24-Ap0067397		mg/kg	< 0.5	< 0.5	<1		Pass	
2.4.5-Trichlorophenol	S24-Ap0067397	CP CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S24-Ap0067397	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S24-Ap0067397	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S24-Ap0067397	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S24-Ap0067397	CP	mg/kg	< 10	< 10	<1	30%	Pass	L

Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S24-Ap0067397	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S24-Ap0067397	СР	mg/kg	< 5	< 5	<1	30%	Pass	
2-Nitrophenol	S24-Ap0067397	СР	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S24-Ap0067397	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S24-Ap0067397	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S24-Ap0067397	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S24-Ap0067397	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S24-Ap0067397	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S24-Ap0067397	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate								•	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S24-Ap0067397	CP	mg/kg	2.3	2.4	5.3	30%	Pass	
Chromium	S24-Ap0067397	CP	mg/kg	58	67	13	30%	Pass	
Copper	S24-Ap0067397	CP	mg/kg	19	20	5.7	30%	Pass	
Lead	S24-Ap0067397	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	S24-Ap0067397	CP	mg/kg	49	46	5.7	30%	Pass	
Zinc	S24-Ap0067397	CP	mg/kg	22	25	13	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S24-Ap0067398	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S24-Ap0067398	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S24-Ap0067398	CP	mg/kg	66	62	7.1	30%	Pass	
Copper	S24-Ap0067398	CP	mg/kg	19	19	1.3	30%	Pass	
Lead	S24-Ap0067398	СР	mg/kg	13	12	5.8	30%	Pass	
Mercury	S24-Ap0067398	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S24-Ap0067398	CP	mg/kg	37	37	1.2	30%	Pass	
Zinc	S24-Ap0067398	CP	mg/kg	53	54	1.7	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons			_	Result 1	Result 2	RPD			
TRH C6-C9	S24-Ap0067406	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	S24-Ap0067406	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S24-Ap0067406	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S24-Ap0067406	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S24-Ap0067406	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S24-Ap0067406	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S24-Ap0067406	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S24-Ap0067406	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fracti	ons		Result 1	Result 2	RPD			
Naphthalene	S24-Ap0067406	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEO) apply specifically to

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Nileshni Goundar	Analytical Services Manager
Fang Yee Tan	Senior Analyst-Metal
Laxman Dias	Senior Analyst-Asbestos
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Sample Properties
Roopesh Rangarajan	Senior Analyst-Volatile

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Compaction & Soil Testing 1/78 Owen St Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	Karl Davis
Report	1091202-AID
Project Name	HUNTER STREET - MUSWELLBROOK
Project ID	SII 5183
Received Date	Apr 24, 2024
Date Reported	May 07, 2024
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.
	NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name	HUNTER STREET - MUSWELLBROOK
Project ID	SII 5183
Date Sampled	Apr 23, 2024
Report	1091202-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH1	24-Ap0067386	Apr 23, 2024	Approximate Sample 71g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH2	24-Ap0067387	Apr 23, 2024	Approximate Sample 75g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH3	24-Ap0067388	Apr 23, 2024	Approximate Sample 63g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH4	24-Ap0067389	Apr 23, 2024	Approximate Sample 108g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH5	24-Ap0067390	Apr 23, 2024	Approximate Sample 56g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH6	24-Ap0067391	Apr 23, 2024	Approximate Sample 95g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH7	24-Ap0067392	Apr 23, 2024	Approximate Sample 127g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH8	24-Ap0067393	Apr 23, 2024	Approximate Sample 61g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH9	24-Ap0067394	Apr 23, 2024	Approximate Sample 81g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH10	24-Ap0067395	Apr 23, 2024	Approximate Sample 140g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH11	24-Ap0067396	Apr 23, 2024	Approximate Sample 81g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH12	24-Ap0067397	Apr 23, 2024	Approximate Sample 54g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH13	24-Ap0067398	Apr 23, 2024	Approximate Sample 42g Sample consisted of: Brown fine-grained clayey soil, plant residue and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH14	24-Ap0067399	Apr 23, 2024	Approximate Sample 70g Sample consisted of: Brown fine-grained clayey soil, plant residue and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH15	24-Ap0067400	Apr 23, 2024	Approximate Sample 81g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH16	24-Ap0067401	Apr 23, 2024	Approximate Sample 93g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH17	24-Ap0067402	Apr 23, 2024	Approximate Sample 59g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH18	24-Ap0067403	Apr 23, 2024	Approximate Sample 100g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH19	24-Ap0067404	Apr 23, 2024	Approximate Sample 99g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH20	24-Ap0067405	Apr 23, 2024	Approximate Sample 96g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyApr 26, 2024

4 Indefinite

		nvironment Tes	ting Australia F	ty Ltd					Eurofins ARL Pty Ltd		Pty Ltd Eurofins Env	-	Ltd	
🔅 eurofins	weibourne	Sydney	Canberra	Brisb			Newcastle	ABN: 91 05 0159 898 Perth	ABN: 47 009 120 549 Perth ProMicro	NZBN: 9429046 Auckland	Auckland (Focus)	Christchurch	Tauranga	
eb: www.eurofins.com.au mail: EnviroSales@eurofins.con	6 Monterey R Dandenong S VIC 3175 +61 3 8564 50 m NATA# 1261 Site# 1254	outh Grovedale VIC 3216	Girraween NSW 2145 5000 +61 2 990 NATA# 120	8400 +61 2 6113 8091 1 NATA# 1261	Murar QLD T: +61 NATA:	rie	4600	1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079 & 25	46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 89 Site# 2370	46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554	35 O'Rorke Roa Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327	d Unit C1/4 Pacific Rise, Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308	43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290	1277 Cameron Roa Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402
Company Name: Address:	Name: Compaction & Soil Testing 1/78 Owen St Glendenning NSW 2761						rder N eport hone: ax:	#: 1 0	991202 2 9675 7522 2 9675 7544		Received: Due: Priority: Contact Name:	Apr 24, 2024 May 3, 2024 5 Day Karl Davis		
Project Name: Project ID:	HUNTER ST SII 5183	FREET - MUS	SWELLBROC	К						1	Eurofins Analytica	l Services Manag	jer : Adam Bat	teup
					Asbestos - AS4964	Eurofins Suite B15	Moisture Set	Eurofins Suite B7A						
	Sa	Imple Detail			4									
Sydney Laboratory -					X	x	x	x						
							x	x						
External Laboratory			Matrix	LAB ID			x	x						
External Laboratory No Sample ID	• NATA # 1261	Site # 18217 Sampling Time		LAB ID \$24-Ap0067386			x	x						
External Laboratory No Sample ID BH1	NATA # 1261 Sample Date	Site # 18217 Sampling Time	Matrix		x	x		X X						
External Laboratory No Sample ID BH1 BH2 BH3 BH3	• NATA # 1261 Sample Date Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil	S24-Ap0067386	× × ×	x	x	X						
External Laboratory No Sample ID BH1 BH2 BH2 BH3 BH4 BH4	• NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil	S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389	x x x x x x x x	x	X X X	x x x x						
External Laboratory No Sample ID BH1 BH2 BH3 BH4 BH5 BH5	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil	S24-Ap0067386 S24-Ap0067387 S24-Ap0067388	x x x x x x x x	X X X X X X X	X X X X X X	x x x x x x						
External LaboratoryNoSample ID1BH12BH23BH34BH45BH56BH6	• NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil	S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389	x x x x x x x x x x	X X X X X X X X	X X X X X X X	x x x x x x x						
External Laboratory No Sample ID BH1 BH2 BH2 BH3 BH3 BH4 BH5 BH6	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil	S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390	x x x x x x x x x x x x x x x	X X X X X X X X X X	x x x x x x x x x x x x	x x x x x x x x x						
External LaboratoryNoSample IDBH1BH2BH2BH3BH3BH4BH4BH5BH6BH7BH8BH8	NATA # 1261 Sample Date Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	 S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393 	x x x x x x x x x x x x x x x x	X X X X X X X X X X X X	x x x x x x x x x x x x x	x x x x x x x x x						
External LaboratoryNoSample ID1BH12BH23BH34BH45BH56BH67BH73BH89BH9	NATA # 1261 Sample Date Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392	x x x x x x x x x x x x x x x	X X X X X X X X X X	x x x x x x x x x x x x x x	x x x x x x x x x x x						
External LaboratoryNoSample IDBH1BH2BH2BH3BH3BH4BH4BH5BH5BH6BH6BH7BH8BH8BH9BH10	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	 S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393 	x x x x x x x x x x x x x x x x	X X X X X X X X X X X X	x x x x x x x x x x x x x x x x	X X X X X X X X X X X X						
1 BH1 2 BH2 3 BH3 4 BH4 5 BH5 6 BH6 7 BH7 8 BH8 9 BH9 10 BH10 11 BH11	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	 S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393 S24-Ap0067394 S24-Ap0067395 S24-Ap0067396 	X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	x x	x x x x x x x x x x x x x x x						
External LaboratoryNoSample ID1BH12BH23BH34BH45BH56BH67BH78BH89BH910BH1011BH11	NATA # 1261 Sample Date Apr 23, 2024 Apr 23, 2024	Site # 18217 Sampling Time	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	 S24-Ap0067386 S24-Ap0067387 S24-Ap0067388 S24-Ap0067389 S24-Ap0067390 S24-Ap0067391 S24-Ap0067392 S24-Ap0067393 S24-Ap0067394 S24-Ap0067395 	X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x	X X X X X X X X X X X X						

		ironment Testing	Australia Pty Ltd							Eurofins /	ARL Pty Ltd	Eurofins ProMic	o Pty Ltd	Eurofins Envir	onment Testing NZ I	_td	
🔅 eurofins	ABN: 50 005 085									ABN: 91 05	0159 898	ABN: 47 009 120 54)	NZBN: 942904602			
web: www.eurofins.com.au email: EnviroSales@eurofins.com	6 Monterey Road Dandenong Sout VIC 3175 +61 3 8564 5000	th Grovedale VIC 3216	Sydney ete 179 Magowar Roa Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217	Canberra d Unit 1,2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466	Murari QLD	mallwoo ie 4172 7 3902 1261	d Place 4600	Mayfield NSW 23 +61 2 49 NATA# 1	rive est 8448	Perth 46-48 Banks Welshpool WA 6106 +61 8 6253 NATA# 2377 Site# 2370	4444	Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554		Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327	Auckland (Focus) Unit C1/4 Pacific Rise, Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290	Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402
Company Name: Address:	Compaction & 1/78 Owen St Glendenning NSW 2761						1202 9675 7522 9675 7544		Received: Due: Priority: Contact Name:			Apr 24, 2024 11:43 PM May 3, 2024 5 Day Karl Davis					
Project Name: Project ID:													Eurofi	ns Analytical	Services Manag	er : Adam Ba	teup
	Sam	ple Detail			Asbestos - AS4964	Eurofins Suite B15	Moisture Set	Eurofins Suite B7A									
Sydney Laboratory -	NATA # 1261 Si	te # 18217			Х	Х	Х	Х									
14 BH14	Apr 23, 2024	Soil	S S	24-Ap0067399	Х	Х	Х	Х									
15 BH15	Apr 23, 2024	Soil	I Si	24-Ap0067400	Х	х	Х	Х									
16 BH16	Apr 23, 2024	Soil	I S	24-Ap0067401	Х	х	Х	Х									
17 BH17	Apr 23, 2024	Soil	I Si	24-Ap0067402	Х	х	Х	х									
18 BH18	Apr 23, 2024	Soil	l Sź	24-Ap0067403	Х	х	Х	х									
	Apr 23, 2024	Soil		24-Ap0067404	Х	х	Х	Х									
	Apr 23, 2024	Soil		24-Ap0067405	Х	х	Х	Х									
	Apr 23, 2024	Soil	I Sź	24-Ap0067406		х	Х	X									
	Apr 23, 2024	Soil	I S	24-Ap0067407		Х	Х	X									
Test Counts					20	22	22	22									

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. 1. 2.
- Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 3. 4. 5.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001). If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w:	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)
F/fld F/mL	Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing ind within the sample (m)
g/kg	Concentration in grams per kilogram
L, mL	Volume, e.g. of air as measured in AFM ($V = r \times t$)
L/min min	Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \begin{pmatrix} a \\ a \end{pmatrix} \times \begin{pmatrix} n \\ r \end{pmatrix} \times \begin{pmatrix} 1 \\ r \end{pmatrix} \times \begin{pmatrix} 1 \\ r \end{pmatrix} = K \times \begin{pmatrix} n \\ n \end{pmatrix} \times \begin{pmatrix} 1 \\ r \end{pmatrix}$
Achaetee Content (on achaetee)	$\% w/w = \frac{(m \times P_A)}{m}$
Asbestos Content (as asbestos):	~
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_x}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix may be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else
	assumed to be 15% in accordance with WA DOH Appendix 2 (P _A). This estimate is not NATA-accredited.
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable
	material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g., by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos	Total %w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece
K Facior	graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
РСМ	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Sampling	Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average %w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Chamath JHM Annakkage

Authorised by:

Laxman Dias

Senior Analyst-Asbestos

Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.